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Human and other multicellular organisms are composed of diverse cell 
types that are characterized by distinct gene expression patterns. In each 
cell type, there is also considerable heterogeneity. The source of cellular 
heterogeneity remains poorly understood, but it is commonly thought 
to be modulated by the balance between intrinsic regulatory networks 
and extrinsic cellular microenvironment1–5. Recently, the rapid devel-
opment of single-cell technologies has enabled accurate and simulta-
neous measurements of cell position and gene expression6–9, thereby 
providing an opportunity to systematically characterize cellular hetero-
geneity. However, the relative contributions of intrinsic and extrinsic 
factors in mediating cell-state variation remain poorly understood.

Currently, there are two major, complementary approaches for sin-
gle-cell transcriptomic profiling. The first is single-cell RNA sequenc-
ing (scRNAseq)6,8,10–15. By combining single-cell isolation, library 
amplification and massively parallel sequencing, scRNAseq provides 
the most comprehensive view of transcriptomes. The second approach 
is single-molecule fluorescence in situ hybridization (smFISH)7,16–20, 
which can be used to detect mRNA transcripts with high sensitivity 
while maintaining the spatial information. Each technology features a 
distinct set of advantages and limitations. The sequential smFISH tech-
nology has the advantage of measuring the transcriptome with high 
accuracy in its native spatial environment, but current implementations 
profile only a few hundred genes, whereas scRNAseq provides whole-
transcriptome estimation, but requires cells to be removed from their 
spatial environment, resulting in a loss of spatial information19,21.

To combine the benefits of both technologies, we developed a 
computational approach to integrate scRNAseq and sequential 
smFISH. First, we used the scRNAseq data as a guide to accurately  

determine the cell types corresponding to the cells profiled by sequen-
tial smFISH. Second, we systematically detected distinct spatial 
domain patterns from sequential smFISH data. These spatial pat-
terns were then in turn used to dissect the environment-associated 
variation in a scRNAseq data set.

This integrated approach allowed us to systematically dissect the 
respective contribution of spatially and cell-type-dependent factors 
in mediating cell-state variation (Fig. 1a), which has eluded previ-
ous studies. We analyzed the mouse visual cortex region and found 
that cell type differences represent only one component in cell-state 
variation, whereas the spatial environment had a substantial role in 
mediating gene activities, probably through cell-cell interactions  
(Fig. 1a) and signaling. Our integrated approach will be broadly appli-
cable to the analysis of diverse tissues from various model systems.

RESULTS
Mapping scRNAseq cell types on seqFISH data
Given that scRNAseq, as a whole transcriptomic approach, can pro-
vide signatures for a diverse set of cell types, we took advantage of 
the whole-transcriptomic information obtained from scRNAseq data 
and developed a supervised cell type mapping approach by integrating 
seqFISH and scRNAseq data (Fig. 1b). Our goal differed from that 
of previous studies22–26, where scRNAseq data were mapped onto 
conventional ISH images to predict cell locations. Traditional ISH 
images are not multiplexed or single-cell resolution. In a seqFISH 
experiment, transcripts from hundreds of genes are detected directly 
in individual cells in their native spatial environment at single- 
molecule resolution.

identification of spatially associated subpopulations  
by combining scrNAseq and sequential fluorescence 
in situ hybridization data
Qian Zhu1, Sheel Shah2,3, Ruben Dries1, Long Cai2  & Guo-Cheng Yuan1 

How intrinsic gene-regulatory networks interact with a cell’s spatial environment to define its identity remains poorly understood. 
We developed an approach to distinguish between intrinsic and extrinsic effects on global gene expression by integrating analysis 
of sequencing-based and imaging-based single-cell transcriptomic profiles, using cross-platform cell type mapping combined 
with a hidden Markov random field model. We applied this approach to dissect the cell-type- and spatial-domain-associated 
heterogeneity in the mouse visual cortex region. Our analysis identified distinct spatially associated, cell-type-independent 
signatures in the glutamatergic and astrocyte cell compartments. Using these signatures to analyze single-cell RNA sequencing 
data, we identified previously unknown spatially associated subpopulations, which were validated by comparison with anatomical 
structures and Allen Brain Atlas images.

1Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts,  
USA. 2Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA. 3UCLA-Caltech Medical Scientist Training 
Program, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA. Correspondence should be addressed to  
L.C. (lcai@caltech.edu) or G.-C.Y. (gcyuan@jimmy.harvard.edu).

Received 21 December 2017; accepted 27 August 2018; published online 29 October 2018; doi:10.1038/nbt.4260

http://orcid.org/0000-0002-7154-5361
http://orcid.org/0000-0002-2283-4714
http://dx.doi.org/10.1038/nbt.4260
http://www.nature.com/naturebiotechnology/


�  advance online publication nature biotechnology

A rt i c l e s

Our strategy was to use scRNAseq data to capture the large cell type 
differences and then further investigate spatial patterning beyond cell 
type variations. We analyzed a published scRNAseq data set targeting 
the mouse visual cortex regions27. Eight major cell types, GABAergic, 
glutamatergic, astrocytes, three oligodendrocyte groups, microglia 
and endothelial cells, were identified from scRNAseq analysis27. To 
estimate the minimal number of genes that are required for accu-
rate cell type mapping, we randomly selected a subset from the list 
of differentially expressed genes across these cell types and applied 
a multiclass support vector machine (SVM)28,29 model using only 
the expression levels of these genes. The performance was evaluated 
by cross-validation. By using only 40 genes, we were able to achieve 
an average level of 89% mapping accuracy. Increasing the number 
of genes led to better performance (92% for 60 genes and 96% for  
80 genes). Thus, there is substantial redundancy in transcriptomic 
profiles, which can be compressed into fewer than 100 genes.

We then investigated a seqFISH data set for the mouse visual cortex 
area19. We imaged a 1-mm × 1-mm contiguous area of the mouse 
visual cortex with four barcoded rounds of hybridization to decode 
100 unique transcripts, followed by five rounds of non-combinatorial 
hybridization to quantify 25 highly expressed genes (Supplementary 
Table 1). These rounds of imaging were preceded by imaging of the 
DAPI stain in the region and followed by imaging of the Nissl stain to 
stain neurons in the region. The images were aligned and transcripts 
decoded as described previously19. Transcripts were assigned to cells 
that were segmented on the basis of Nissl and DAPI staining. We were 
able to quantify the expression levels of these 125 genes with high 
accuracy in a total of 1,597 cells.

After identifying differentially expressed genes across the 8 major 
cell types in a previous study27, we selected the top 43 (P < 10−20) of 
these 125 genes for cell type classification. These genes contained 
both highly expressed (>50 copies per cell) and lowly expressed genes 
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Figure 1 Overall goal of the project and cell type prediction in seqFISH data. (a) Cellular heterogeneity is driven by both cell type (indicated by shape) 
and environmental factors (indicated by colors). scRNAseq-based studies can only detect cell-type-related variation, as spatial information is lost.  
(b) Our goal was to decompose the contributions of each factor by developing methods to integrate scRNAseq and seqFISH data. (c) Prediction results 
evaluated by the comparison of cell type average expression profile across technologies for eight major cell types. Values represent expression z scores. 
SVM was tuned for the parameter C, which was set to 1 × 10−5 to optimize the cross-platform cell type to cell type correlations. The major cell types in 
the scRNAseq data set (Astro, n = 43 cells; Endo, n = 29; GABA-N, n = 761; Glut-N, n = 812; Micro, n = 22; OPC, n = 19; Oligo.1, n = 6; Oligo.2,  
n = 31) mapped to 97, 11, 556, 859, 22, 8, 21 and 23 cells in the seqFISH data set. (d) Pearson correlation between reference and predicted cell 
type averages ranged from 0.75 to 0.95. (e) Integration of seqFISH and scRNAseq data (illustrated in b) enabled cell type mapping with spatial 
information in the adult mouse visual cortex. Each cell type is labeled by a different color. Cell shape information was obtained from segmentation of 
cells from images (Online Methods). One mouse brain was assayed by seqFISH because of experimental cost.
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(<10 copies per cell). Cross-validation analysis revealed that, using 
these 43 genes as input, the SVM model accurately mapped 90.1% 
of the cells in the scRNAseq data to the correct cell type. Thus, we 
used these 43 genes (Supplementary Table 2) to map cell types in 
the seqFISH data.

As a first step, we preprocessed the seqFISH data using a multi-
image regression algorithm to reduce potential technical biases result-
ing from non-uniform imaging intensity variation (Online Methods). 
We further adopted a quantile normalization30 approach to calibrate 
the scaling and distribution differences between scRNAseq and  

seqFISH experiments. For most genes, the quantile-quantile (q-q) 
plot normalization curve was notably linear (Supplementary Fig. 1),  
suggesting a high degree of agreement between the two data sets 
despite technological differences. We then applied the SVM classifi-
cation model to the bias-corrected, quantile-normalized seqFISH data 
to assign cell types. Of note, we found that better performance could 
be achieved by further calibrating model parameters to accommodate 
platform differences. The results of multiclass SVM were calibrated 
across models31 and converted to probabilities. We found that 5.5% 
cells were excluded, that is, they could not be confidently mapped to 
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Figure 2 Spatial domain dissection in seqFISH data using HMRF. (a) A schematic overview of the HMRF model. A neighborhood graph represents 
the spatial relationship between imaged cells (indicated by the circles) in the seqFISH data. The edges connect neighboring cells. seqFISH-detected 
multigene expression profiles are used together with the graph topology to identify spatial domains. In contrast, k-means and other clustering methods 
do not utilize spatial information and the results are therefore expected to be less coherent (illustrated in the dashed box). (b) An intuitive illustration 
of the basic principles in a HMRF model. For a hypothetical cell (indicated by the question mark), its spatial domain assignment is inferred from 
combining information from gene expression (xi) and neighborhood configuration (cNi). The color of each node represents the cell’s expression and the 
number inside each node is the domain number. In this hypothetical example, combining such information results in the cell being assigned to domain 
1, instead of domain 3 (Online Methods). (c) HMRF identified spatial domain configuration in the mouse visual cortex region. Distinct domains revealed 
a resemblance to layer organization of cortex. Naming of domains: I1a, I1b, I2 and I3 are inner domains distributed in the inner layers. O1–O4 are outer 
domains. IS represents the inner scattered state. These domains are associated with cell morphological features, such as distinct cell shape differences 
in outer layer domains. Cell shape information was obtained from the segmentation of cells from images (Online Methods). For HMRF, 1,000 initial 
centroids were used and the best configuration was selected to initialize HMRF. The procedure was repeated two more times with similar results.  
(d) General domain signatures are shared between cells within domains. P values signify two-sided Welch’s t tests with P values adjusted for  
multiple comparisons. Genes with significant P values are shown. All domains are compared: O2 (n = 109 cells), I1a (n = 389), O4 (n = 120),  
I1b (n = 79), O1 (n = 135), I2 (n = 117), I3 (n = 205), O3 (n = 270) and IS (n = 173).
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a single cell type (with 0.5 or less probability). Among the mapped 
cells, 54% were glutamatergic neurons, 37% were GABAergic neurons, 
4.8% were astrocytes, and other glial cell types and endothelial cells 
comprised the remaining 4.2% of cells (Fig. 1c).

To validate our predictions, we first checked the expression of 
known marker genes and compared the average gene expression pro-
files between scRNAseq and seqFISH data. Indeed, this comparison 
revealed a high degree of similarity (Fig. 1c). Notably, marker genes 
were, as expected, highly expressed in the matched cell types, such as 
Gja1 and Mfge8 in astrocytes, Laptm5 and Abca9 in microglia, Cldn5 
in endothelial cells, Tbr1 and Gda in glutamatergic neurons, and 
Slc5a7 and Sox2 in GABAergic neurons. The majority of cell types had 
a high Pearson correlation (>0.8) between matched cell types’ average 
expression profile; even for the rare cell type microglia, the correla-
tion remained reasonably high (0.75) (Fig. 1d). We were also able 
to distinguish early maturing oligodendrocytes in the seqFISH data 
on the basis of Itpr2 expression (Fig. 1c), as previously reported15. 

Expression patterns of inhibitory GABAergic neurons and excitatory 
glutamatergic neurons exhibited strong anti-correlation (Fig. 1d).

As an additional validation, we compared the neurons that were 
stained with Nissl and DAPI with astrocytes that were only stained with 
DAPI. Our cell type mapping results agree with these patterns. Over 
89% of predicted astrocytes exhibited strong DAPI staining, but weak 
or no Nissl staining, across cortex columns (Supplementary Note 1 
and Supplementary Table 3). Taken together, these analyses indicate 
that the majority of cells were mapped to the correct cell types.

By combining cell type predictions from scRNAseq and positional 
information from seqFISH, we were able to construct a single-cell 
resolution landscape of cell type spatial distribution (Fig. 1e). As 
expected, this landscape is very complex, with different cell types 
intermixed with each other (Fig. 1e). On the other hand, it is clear 
that there remains substantial heterogeneity in each cell type.

A systematic approach to identify multicellular niche
Microenvironment in tissues can contribute to heterogeneity in addi-
tion to cell-type-specific expression patterns. To systematically dissect 
the contributions of microenvironments on gene expression variation, 
we developed a hidden-Markov random field (HMRF) approach32 to 
unbiasedly inform the organizational structure of the visual cortex 
(Fig. 2a). The basic assumption is that the visual cortex can be divided 
into domains with coherent gene expression patterns. A domain may 
be formed by a cluster of cells from the same cell type, but it may also 
consist of multiple cell types. In the latter scenario, the expression 
patterns of cell-type-specific genes may not be spatially coherent, but 
environment-associated genes would be expressed in spatial domains. 
A HMRF enables the detection of spatial domains by systematically 
comparing the gene signature of each cell with its surroundings to 
search for coherent patterns. Briefly, we computationally constructed 
an undirected graph to represent the spatial relationship among the 
cells, connecting any pair of cells that were immediate neighbors 
(Fig. 2a,b). Each cell was represented as a node in this graph. The 
domain state of each cell was influenced by two sources (Fig. 2b): its 
gene expression pattern and the domain states of neighboring cells. 
The total contribution of neighboring cells can be mathematically 
represented as a continuous energy field, and the optimal solution 
is identified by searching for the equilibrium of the field (Online 
Methods and Supplementary Note 1).

Next, we applied our HMRF model to analyze the 1,597-cell mouse 
visual cortex seqFISH data set. The expression of the 125 genes ranged 
from being highly scattered to spatially organized. To enhance spatial 
domain detection, we defined a spatial coherence score and selected 
the top 80 genes for HMRF analysis (Online Methods). As an addi-
tional filter, we further removed 11 genes that were highly specific to 
a single cell type, resulting in 69 genes (Supplementary Table 4) for 
spatial domain identification. We found that this additional filtering 
step improved the resolution while preserving the overall spatial pat-
tern (Supplementary Fig. 2).

HMRF modeling of the visual cortex region revealed nine spatial 
domains (Fig. 2c). These domains had distinct spatial patterns; some 
displayed a layered organization that resembled the anatomical struc-
ture33. For example, four of the domains were located on the outer lay-
ers of the cortex, and we labeled them as O1, O2, O3 and O4 (Fig. 2c).  
The locations of these layers roughly corresponded to the well- 
characterized L1, L6 and external capsule (EC) layers, respectively. 
Four domains were located on the inside of the cortex therefore labeled 
as I1a, I1b, I2, and I3, respectively (Fig. 2c). These domains roughly 
corresponded to the L2–5 layers. These inner domains were less  
pronounced than the outer domains, which is consistent with previous  
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Figure 3 HMRF analysis identified domain-associated heterogeneity in 
glutamatergic cells. (a) Three major sources of variations in glutamatergic 
neurons (n = 859). Glutamatergic neurons were distributed across nine 
domains with 79, 187, 88, 58, 93, 60, 73, 129 and 92 cells in O2,  
I1a, O4, I1b, O1, I2, I3, O3 and IS domains, respectively. Top, cell- 
type-specific signals: Gda and Tbr1. Middle, general domain signatures, 
as shown in Figure 2d, were summarized as metagene expression.  
Bottom, glutamatergic-restricted domain signatures, as identified by 
comparing glutamatergic cells across domains and removing signatures 
that were general domain signatures. Signature genes were obtained by 
two-sided Welch’s t tests with P values adjusted for multiple comparisons.  
(b) Snapshots of single cells. Each row shows a snapshot of cells at  
the boundary of two layers. Each of two columns is a type of annotation. 
Left, cell type; right, HMRF domains. Cell type annotation was incapable 
of explaining layer-to-layer morphological variations; for example, 
glutamatergic cells (orange) were present in all layers, yet morphological 
differences existed in glutamatergic cells. HMRF domains better captured 
the boundary of two layers in each case, in that the domains could 
separate distinct morphologies. A systematic comparison is shown in 
Supplementary Figure 12 (see also Supplementary Fig. 11).
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anatomical analysis. Finally, one domain was sporadically distributed 
across in the inner layers of the cortex, and we labeled it as IS (Fig. 2c). 
Of note, such domain-like patterns were not visible in the cell type local-
ization pattern (Fig. 1e). Consistent with these results, a t-distributed 
stochastic neighbor embedding (t-SNE) plot using these 69 genes iden-
tified clustering patterns that were similar to the domain annotations 
but differed greatly from the cell type annotations (Supplementary  
Fig. 3). These results strongly suggest that HMRF provides complemen-
tary information to cell type annotations.

By overlaying cell type annotations, we found that each domain gen-
erally consisted of a mixture of GABAergic neurons, glutamatergic neu-
rons and astrocytes interacting in each environment (Supplementary 
Fig. 4). The decomposition of mouse visual cortex into spatial domains 
suggests that a spatial gene expression program is shared across cells 
in proximity. Differential gene expression analysis identified dis-
tinct signatures, which we labeled as the general domain signatures, 
associated with each spatial domain (Fig. 2d and Supplementary  
Figs. 5–7). For example, the genes Calb1, Cpne5 and Nov were prefer-
entially expressed in inner domains (I1a, I1b), whereas Serpinb11 and 
Capn13 were highly enriched in outer domains (O1, O2). Different 

outer domains could be further distinguished by additional markers, 
such as Mmgt1 (O3), Aldh3b2 (O1) and Fam69c (O2). Notably, these 
spatial gene signatures transcended multiple cell types and were there-
fore distinct from cell-type-specific signatures (Supplementary Figs. 6 
and 7). The spatial marker genes, including Calb1, Cpne5 and Nov, were 
highly consistent with their spatial expression in Allen Brain Atlas33 
ISH images (Supplementary Fig. 8). Other markers, such as Nell1, 
Aldh3b2 and Gdf5, had layer-specific expressions that were consistent 
with previous results15 (Supplementary Fig. 8). We summarized the 
gene signature of each domain as a metagene, defined as the average 
expression of the subset of genes that were specifically associated with 
the domain. This provides an ‘analog’ representation of the spatial 
domain information as an additional diagnostic (Supplementary  
Fig. 9). Taken together, these analyses strongly suggest that our model 
for analyzing seqFISH data is able to detect functionally and transcrip-
tionally distinct spatial environments.

Interactions between cell type and spatial environment
Glutamatergic neurons mediate the neuronal circuit in the visual 
cortex via a primarily excitatory function. It is also well-known that 
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Figure 4 Reanalysis of single-cell RNAseq data (from ref. 27) with domain signatures summarized into metagenes. (a) t-SNE plot shows how the 812 
glutamatergic cells from ref. 27 cluster according to expanded domain signatures aggregated as metagenes (shown in b). Colors indicate k-means 
clusters (k = 9). Each cluster is annotated by its enriched metagene expression. Nine annotated glutamatergic metagene clusters were identified: O2 
(n = 132 cells), I1a (n = 98), O4 (n = 92), I1b (n = 131), O1 (n = 84), I2 (n = 22), I3 (n = 97), O3 (n = 100) and IS (n = 56). (b) Binarized metagene 
expression profiles for the glutamatergic cells. Red, population that highly expresses the metagene. (c) Spatial clusters defined according to metagenes 
were enriched in manual layer dissection annotations. Column, layer annotation information obtained from microdissection27, with L1–L2/3 (n = 48 
cells), L4 (n = 202), L5 (n = 116), L6 (n = 12), L6a (n = 87) and L6b (n = 33). Row, metagene-based cell clusters. Shown are hypergeometric P values 
of cell overlaps. (d) Inferred spatial clusters of glutamatergic neurons were enriched in distinct GO biological processes. Shown are hypergeometric  
P values of gene overlaps between differentially expressed genes (n = 500) of each metagene cluster and Gene Ontology gene sets (variable sizes).  
P values were adjusted for multiple comparisons.
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the behavior of different glutamatergic neurons can be very differ-
ent27,34. Using a combination of cell type mapping and spatial domain 
identification, we set out to dissect the source of heterogeneity in 
glutamatergic cells. First, nearly all glutamatergic cells expressed 
cell-type-specific markers, such as Gda and Tbr1 (Fig. 3a). In addi-
tion to cell type identity, there exists substantial spatially dependent 
heterogeneity in glutamatergic cells. Given that glutamatergic cells 
are spread across all nine domains, each subset expressed a differ-
ent gene signature in accordance with domain annotation (Fig. 3a). 
First, the general domain signatures (Fig. 2d), aggregated as meta-
genes, could be used to separate glutamatergic cells into domains 
(Fig. 3a). Second, beyond the general signature, an additional set 
of gene signatures were differentially expressed between glutama-
tergic cells in different domains (Fig. 3a). To distinguish these genes 
from the general domain signatures, which transcend cell types, 
we referred to these genes as the glutamatergic-restricted signa-
tures. For example, Mmp8 expression was restricted to domain O2  
(Fig. 3a), whereas Hoxb8 expression was specific to O3 and Nfkb2 
to IS (Fig. 3a). Collectively, the domain-specific signatures mapped 
out the spatial patterns of expression in glutamatergic cells, dem-
onstrating their power to differentiate subgroups of this cell type 
(Supplementary Figs. 9–11).

By visual inspection, we observed notable morphological variations 
near the boundary between different domains at multiple regions (Fig. 3b),  
including change of circularity and cell orientations, and these were 
accompanied by metagene expression switches (Supplementary  
Fig. 11). To systematically compare the morphological differences 
between different domains, we extracted quantitative information of 
15 different morphological features per cell based on the Nissl stain-
ing images and compared the statistical distributions across different 
domains. Indeed, we found that a number of features displayed strong 
domain associations, including circularity in O4 (P < 6.1 × 10−12), 

width in I1b (P < 1.6 × 10−14), angle in O3 (P < 6.7 × 10−18) and mini-
mum feret diameter in I1a (P < 3.0 × 10−11) (Supplementary Fig. 12). 
Of note, these differences could not be identified by cell type mapping 
alone (Fig. 3b). Thus, in neuronal cell types, such as glutamatergic or 
GABAergic neurons, substantial morphological differences remain 
across domains, suggesting that spatial positions account for a large 
part of the morphologies of these cells, consistent with known mor-
phological diversity in the cortex. Overall, these analyses strongly 
suggest that spatial domain variation is important for mediating cel-
lular heterogeneity.

Using HMRF domain information to reanalyze scRNAseq data
ScRNAseq data does not contain spatial information. However, using 
domain signatures derived from seqFISH as a guide, we were able to 
infer spatial locations from scRNAseq data. To dissect the contribution 
of environmental factors to transcriptomic heterogeneity, we focused 
on glutamatergic cells and combined the general domain signatures 
with the additional set of markers that are glutamatergic restrictive. 
Using these expanded domain signatures (Supplementary Table 5) 
summarized as metagenes, we were able to uncover a hidden struc-
ture in the glutamatergic cells (Fig. 4a,b). Notably, the glutamatergic 
cells could be partitioned into nine different clusters on the basis of 
the expanded domain signatures, which were highly consistent with 
seqFISH data analysis (Fig. 4a,b). As such, these clusters were labeled 
according to their enriched metagene signatures (Fig. 4a).

We compared the inferred domain annotations with the original 
sites of dissection in a previous study27. Several domains matched the 
corresponding layer structure very well (Fig. 4c). For example, cluster 
1 (annotated as domain I1a based on metagene analysis) significantly 
overlapped with L1–L2/3 (P < 2.3 × 10−6). Cluster 2 (annotated as 
domain O2) overlapped with L6b (P < 4.8 × 10−9), and cluster 9 (anno-
tated as domain I3) significantly overlapped with L6a (P < 1.0 × 10−8). 
On the other hand, clusters 3–5 (annotated as domains O4, I2 and IS) 
did not correspond to specific layers.

Using the whole transcriptomes from scRNAseq, we searched for 
additional domain-specific gene signatures based on coexpression 
analysis. Our analysis identified a number of genes that were not 
assayed by seqFISH, including Tubb2a (I1a) and Ndrg3 (O4). We 
examined the corresponding ISH images in the Allen Brain Atlas 
and found that the inferred spatial patterns agreed well with the imag-
ing data (Supplementary Fig. 13). We further conducted gene set 
enrichment analysis based on the inferred domain-specific markers 
and identified a number of functional biological processes that were 
enriched in specific domains (Fig. 4d).

An important question is whether the distinction between the 
subpopulations identified through our integrative analysis sim-
ply reflect cell subtype differences that can be identified through 
scRNAseq analysis alone. To address this question, we systematically 
compared the domain and cell subtype annotations using a number of 
approaches, including the underlying gene signatures, the grouping 
of cells based on domain or cell subtype annotations, and tSNE-based 
visualizations (Supplementary Figs. 14 and 15). Based on these com-
parisons, we came to two conclusions. On one hand, we observed 
a non-negligible association between the two sets of annotations, 
such as at L6b_Serpinb11, L2/3_Ptgs2 and L6a_Sla (Supplementary 
Fig. 14). For example, several domain-specific markers were also 
markers of specific cell subtypes, such as Serpinb11, Cpne5 and 
Sema3e (Supplementary Fig. 16a). On the other hand, it was also 
clear that the overall structure of domain and subtype annotations 
were very different. For example, cells whose locations we inferred 
to be in domains O1, IS and O4 spread across multiple subtypes 
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(Supplementary Figs. 14 and 16b). Conversely, neither the L5a_Batf3 
nor L5a_Hsd11b1 subtype was associated with any specific domain 
(Supplementary Fig. 14). Taken together, these analyses strongly 
indicate that the domain patterns are distinct from, and therefore 
complementary to, cell subtype annotations. Thus, integrating seq-
FISH data analysis provides new insights into scRNAseq data.

Region-specific variation among astrocytes
Next, we investigated the environment effect on astrocytes, which 
are also known to have substantial heterogeneity20,35. Our cell type 
mapping identified 48 astrocytes in the seqFISH data. These cells all 
expressed key astrocyte markers but were spread across five different 
spatial domains (O1, O2, O3, I1a and I3; Fig. 5a). Of note, a number 
of astrocyte markers20 were only expressed in specific domains 
(Supplementary Fig. 17). As an example, Acta2, Col5a1 and Sox2 
were strongly associated with domain I1a, whereas their expression 
levels were greatly reduced in domains O1 and O2. On the other hand, 
the expression levels of Clec5a and Ankle1 were high in domains O2 
and O1 but were much lower in other domains. The spatially depend-
ent variations might underline important functional differences.

DISCUSSION
A major goal in single-cell analysis is to systematically dissect the con-
tributions of cell types and environment to cell-state variability. We 
developed an HMRF-based computational approach to combine the 
strengths of sequencing and imaging-based single-cell transcriptomic 
profiling strategies. We used our method to detect spatial domains in 
the mouse visual cortex region. In doing so, we were able to identify 
environment-associated variations. Our analysis also demonstrated 
that further insights can be gleaned from single-cell data by integrat-
ing information from complementary technologies. In particular, 
integrating scRNAseq data allowed us to map cell types more accu-
rately than using seqFISH data analysis alone, whereas integrating 
seqFISH data allowed us to extract spatial structure in scRNAseq data 
analysis. Although the classification of a small number of isolated cells 
as domains may be questionable, such events were rare and did not 
affect the overall spatial domain patterns.

To test the generalizability of our method, we used it to analyze 
a published spatial transcriptomic data set obtained from a very 
different technology at olfactory bulbs36. Here, spatial information 
was identified by hybridizing mRNA to a specially designed tissue 
microarray containing spatial barcoding oligo-probes. Despite the 
substantial platform differences, our HMRF model was able to reca-
pitulate the spatial domains that are consistent with the underlying 
anatomical structures (Supplementary Fig. 18). In another exam-
ple, we analyzed seqFISH data19 obtained from a different region of 
the mouse brain (dentate gyrus) using different probes. Again, the 
results were consistent with the anatomical structure (Supplementary  
Fig. 19). These analyses strongly indicate that our method is generally 
applicable. Of note, our HMRF model is agnostic about the cell type 
composition and associated gene signatures. Moreover, its application 
does not require single-cell resolution data, as it can also detect spatial 
patterns on larger scales.

Two recent studies have also investigated spatially variable genes. 
Specifically, SpatialDE37 is designed to identify individual genes 
whose expression levels at neighboring sites are correlated. Of note, 
SpatialDE does not identify spatial regions with distinct expression 
patterns. Similarly, trendsceek38 is also designed to detect spatial 
dependency. However, its application is limited to a single gene at 
a time. In contrast, our HMRF method can simultaneously detect 
the combinatorial pattern of all profiled genes. A unique aspect of 

our study was the integration of cell type and spatial domain anno-
tations. This is important for systematically dissecting the roles of 
intrinsic regulatory networks and spatial environment in the main-
tenance of cellular states. Future work will be needed to investigate 
the mechanisms underlying the interactions between cell type and 
microenvironment.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
SeqFISH data generation. SeqFISH data in the mouse visual cortex region 
was generated as described previously19. Briefly, 100 genes were encoded using 
a temporal barcoding method and 25 genes were quantified individually. To 
encode 100 genes, four rounds of hybridization were performed using five 
distinct fluorescence channels. Out of a total possible 625 barcodes, 100 were 
chosen such that loss of signal in any given hybridization still allows accurate 
decoding of the spot. Every transcript was hybridized in every round using a 
given probe set. After hybridization, the signal was amplified using smHCR 
and images were taken at predefined locations in the mouse visual cortex. 
The DNA probes along with the amplification polymers were digested using 
DNase I leaving behind a naked RNA for re-hybridization with the next probe 
set. A round of imaging with DAPI staining (which labels the DNA) was done 
before any RNA hybridization to image all nuclei in the fields and a final round 
of Nissl staining (which labels the cell body in neuronal cells) was imaged to 
identify cell boundaries. Cells were segmented based on DAPI staining, Nissl 
staining, and RNA point density. Once all imaging rounds were completed, 
these images were aligned using a two-dimensional (2D) normalized cross 
correlation and each spot was decoded based on the unique color switching 
pattern. For the 25 genes that were labeled without any barcoding, simple spot 
counting was done to identify the number of transcripts. These transcripts 
were then assigned to cells based on the location of the transcript and the 
segmentation masks. For more details regarding the seqFISH method, please 
refer to ref. 19. The spatial coordinates of the cells are provided on our website 
(see data availability).

SeqFISH data normalization and bias correction. The seqFISH gene expres-
sion matrix, represented by log(count + 1), was normalized by row and col-
umn z-scoring to remove cell-specific and gene-specific biases. Potential field 
imaging biases were estimated and removed by using a multi-image regres-
sion algorithm similar as previously done39. Briefly, for each gene, the imag-
ing bias at each binned location was estimated by averaging the normalized 
gene expression levels over eight neighboring bins in each field followed by 
averaging across all fields. The estimated bias was then modeled by principal 
component analysis. The contributions of the four most significant principal 
components were estimated by linear regression and removed from the nor-
malized gene expression matrix (Supplementary Fig. 20).

Cell type mapping. Single-cell RNAseq data for the mouse visual cortex were 
obtained from Gene Expression Omnibus40 (GSE71585). Cell type informa-
tion corresponding to 1,723 cells was obtained from the original paper27. In 
this analysis, we considered the eight major cell types: GABAergic, glutama-
tergic, astrocytes, three oligodendrocyte groups, microglia, and endothelial 
cells. Differentially expressed genes among different cell types were identified 
by MAST41.

We trained classifiers of cell types from single-cell RNAseq data set by using 
the multiclass SVM formulation. For each cell type, we built a classifier as fol-
lows. Let xi, i = 1,…, n, be the gene expression pattern for the i-th cell, and yi 
code for cell type identity: yi = 1 if cell i belongs to the specified cell type and 
-1 otherwise. We selected the linear kernel that produces two hyperplanes that 
best separates the two classes. The objective function is defined as follows

minimize C wii
n z2
1

2 2=∑( )+ || || /

subject to 1 0 1− ≤ ⋅ − ≥z zi i i iy w x b( ), ( )

Here w is the normal vector to the hyperplane used to represent margin. The 
squared hinge loss function Σi

n
i=1
2z  is used here to quantify the margin of 

misclassification error. C is a regularization parameter that trades off misclassi-
fication due to overfitting against simplicity of the decision function. A lower C 
increases the ability of the model to generalize to unseen data at a cost of larger 
fitting error. For testing data, the sign of w·xi − b is used to predict cell type 
identity. We used the Python LinearSVC implementation, which is part of the 
scikit-learn 0.19 library42, with the following parameter setting: class_weights 
= balanced, dual = False, max_iter = 10,000, and tol = 1 × 10−4.

Using the SVM model formulated as above, we first tested how many genes 
are needed for accurate cell-type mapping. To this end, we randomly subset 

(1)(1)

20, 40, 60 and 80 genes from the list of differentially expressed genes and, for 
each gene set, built a vanilla SVM classification model to map each cell in the 
single-cell RNAseq data set to its corresponding cell type. The accuracy was 
evaluated by using fourfold cross-validation. Our results indicated that a high 
accuracy (>90%) can be obtained with 40 or more genes.

In addition to the major cell types mentioned above, a previous study27 
also identified 22 fine cell classes, and 49 minor cell classes. Using the same 
approach, we also evaluated the accuracy of refined cell type mapping 
(Supplementary Fig. 21). We found that approximately 200 genes were 
required to achieve 85% accuracy in predicting 22 finer classes, and over 
800 genes were needed to predict the 49 minor cell types with 75% accuracy. 
Therefore, we focused on the mapping of eight major cell types on seqFISH 
given that they can be predicted accurately with fewer than 100 genes (ROC 
curves in Supplementary Fig. 22).

To map cell types in the seqFISH data, we made a few modifications to 
incorporate the platform differences. First, since 125 genes were profiled by 
seqFISH, we used the intersection with the top differentially expressed genes 
(P < 1 × 10−20) in the scRNAseq data set for cell type mapping, thereby select-
ing 43 genes in total. Based on the subsampling analysis described above, these 
43 genes were sufficient for accurate cell type mapping. Second, the scRNAseq 
data were z-score transformed so that the dynamic range was comparable 
with seqFISH data. Third, we used quantile normalization30 to convert seq-
FISH data so that the statistical distribution was almost identical to single-cell 
RNAseq data. Fourth, we chose the regularization parameter C to maximize 
the cross-platform correlation between the cell-type specific gene expression 
profiles, resulting an estimate of C = 1 × 10−6. Finally, to account for the pos-
sibility that certain cells cannot be unequivocally assigned to a single cell type, 
we used Platt scaling31 to convert SVM output to a probability measure and 
then selected a cutoff value of 0.5 probability to filter cells that can be confi-
dently mapped to a single cell type. 97 (5%) cells did not pass this filter.

HMRF. HMRF is a graph-based model commonly used for pattern recognition 
in image data analyses32,43. In a common setting, HMRF is used to model the 
spatial distribution of a signal, such as the pixel intensities over a 2D image. 
The spatial structure is represented as a set of nodes on a regular grid, where 
neighboring nodes are connected to each other. The spatial pattern is ‘hidden’ 
in the sense that it must be indirectly estimated from other variables that can 
be directly measured. The most important assumption in HMRF is the Markov 
property, which states that the spatial constraints can be reduced to consider-
ing only correlation between immediate neighboring nodes. This simplifying 
assumption implies that the joint distribution can be decomposed as products 
of much smaller components each defined on a fully connected subgraph 
(termed cliques). As has been done previously, we decomposed the graph into 
size-2 components (or edges in the graph) that provides a convenient means 
to estimating the MRF by using pairwise energies.

Specifically, let S = {Si} be the nodes in the graph. The set of nodes and 
the adjacency relation as defined by the local neighborhood graph forms the 
neighborhood system (S, {Ni}). Every node is associated with observed signal 
values xi. Let C = {ci = 1,…,K} represent the set of possible classes of patterns. 
The joint probability that a node Si is associated with class ci is specified by 
the following equation:

P c s x c Z P x c s P c s ci i i N i i i i i Ni i( | , , ) / ( | , ) ( | , ) ( )=1 2

In the right hand side, the term P(xi|ci,si) models the effect of the node Si’s 
own gene expression, whereas P c s ci i Ni( | , )  models the effect of the neigh-
boring cells configuration cNi

. The combined effect of these two terms is 
schematically shown in Figure 2. The latter term is further determined by 
the Gibbs distribution:

P c s c Z U c ci i N j is Ni j i
( | , ) / exp ( , ) ( )= −



∈∑1 32 b

where U(cj, ci) is referred to as the energy function. The exact formulation of 
U(cj, ci) is dependent on the specific application, and it imposes the assumption 
of how neighboring nodes interact with each other. Here we use the special 
case Pott’s model.

U c c c cj i j i( , ) ( )= − =1 4if and 0 otherwise

(2)(2)

(3)(3)

(4)(4)
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which means that the effects of neighboring cells are additive. Essentially, 
P c s ci i Ni( | , )  expresses the total energies as a summation of pairwise inter-

action energies with neighbors. The parameter beta reflects the strength of 
interactions.

Application to seqFISH data. The HMRF model described above is naturally 
applicable to analyze seqFISH data. Here each class of patterns corresponds to 
a spatial domain. The observed signals are gene expression levels measured by 
seqFISH data, whose distribution is modeled as a multivariate Gaussian ran-
dom variable. The application of HMRF to seqFISH data analysis involves the 
following four components: neighboring graph representation, gene selection, 
domain number selection, and model inference. The details of each component 
are described below.

1. Neighborhood graph representation. An undirected graph was con-
structed to represent the spatial relationship between the cells. Each node 
represents a cell, and each edge connects a pair of neighboring cells. The 
neighborhood size was chosen such that on average each cell has five neigh-
boring cells.

2. Gene selection. We selected a subset of genes whose expression patterns 
tend to be spatially coherent based on the following analysis. For each gene 
g, cells were divided into two mutually exclusive sets: the first set, denoted by 
L1, contains cells with high expression at the 90th percentile expression level 
cutoff, and the rest of the cells were denoted by L0. The spatial coherence of 
gene expression was quantified as the Silhouette coefficient44 of the spatial 
distance associated with these two cell sets. Specifically, the Silhouette coef-
ficient is calculated as:

d g i i i is LL m n m n
i

= −∈∑1 51
1

/ | | ( )/max( , ) ( )

where for a given cell si in set L1, mi is defined as the average distance between 
si and any cell in L0, and ni is defined as the average distance between si and 
any other cell in L1. Here, we used the rank-normalized, exponentially trans-
formed distance to quantify the local physical distance between two cells. For 
a pair of cells si and sj, this distance is defined as r s s qi j

s sd i i( , ) ( , )= − −1 1rank  
where rankd(si, sj) is the mutual rank45 of si and sj in the vectors of euclidean 
distances {Euc(si, *)} and {Euc(sj, *)}. Hence, this exponentially weighted func-
tion46 is designed to place more emphasis on closely located cells and penalize 
far-away cells’ distance. q is a rank-weighting constant (0 < q < 1.0) set at 0.95. 
The statistical significance of δg was evaluated by random permutation, and 
the genes associated with significant values of δg (P < 0.05) were selected as 
spatially coherent.

Using the above criteria, we found 80 spatially coherent genes. We further 
removed 11 cell type specific genes (MAST P < 1 × 10−20) which have aver-
age expression z-score > 2. We found this additional filtering step is use-
ful for improving the resolution while preserving the overall spatial pattern 
(Supplementary Fig. 2). We repeated the analysis using varying degree of 
stringency for selecting spatially coherent genes (Supplementary Fig. 23), 
varying the degree of excluding cell-type-specific genes (Supplementary  
Fig. 2), and varying beta (Supplementary Fig. 24), and found that the overall 
patterns identified by the HMRF model is robust against these variations.

3. Domain number selection. We used k-means clustering results as ini-
tialization for the HMRF domains. The value of k was selected based on the 
gap-statistics47.

4. Implementation and model inference. The model parameters were 
inferred by using the Expectation-Maximization (EM) algorithm48. We 
developed a new implementation based on the MRITC R package49 and 
GraphColoring Java package50. The implementation contains modifications 
to accommodate arbitrary neighborhood graph topology. The domain assign-
ment for each cell was determined by using maximum a posteriori estima-
tion, which can be viewed as the equilibrium state of the energy function. See 
Supplementary Note 1 for implementation details.

Robustness analysis of the HMRF model. We also tested the robustness of 
our HMRF model against spatial perturbation. This was achieved by randomly 
exchanging the spatial locations of a subset of cells (10, 20, 40 and 100%). At 
100% exchanging rate, the spatial coherence is completely disrupted. Log-
likelihood of the HMRF model was recorded and compared across scenarios. 

(5)(5)

As expected, the log-likelihood achieves maximum at a low perturbation 
rate and gradually decreases as the exchange rate increases. The difference 
between the perturbed and unperturbed data is highly statistically significant 
(Supplementary Fig. 25).

Domain-specific gene signatures. For each spatial domain, we identified a 
subset of genes that were significantly upregulated in the domain compared 
to cells in other regions. Specifically, we require that the selected gene be both 
significant in one-versus-one tests (comparing it to one domain at a time, and 
pass significance threshold P < 0.05 in at least seven of eight such tests, Welch’s 
t test) and significant in one-versus-rest test (P < 1 × 10−6, Welch’s t test). The 
use of t test is justified as the expression z-scores are approximately normally 
distributed (Supplementary Fig. 26). Non-parametric Mann–Whitney U tests 
yield similar signatures (Supplementary Fig. 27). Accordingly, we defined a 
metagene signature as the average expression level for this subset of upregu-
lated genes. These domain-associated metagene signatures (Fig. 2d) transcend 
cell types (Supplementary Figs. 6 and 7). Furthermore, we restricted this 
comparison to each specific cell type, and obtained an additional list of genes 
that are differentially expressed between domains. An expanded domain-
metagene signatures was then defined based on the merged gene subsets. For 
glutamatergic cells, the expanded metagene signatures are summarized in 
Supplementary Table 5.

Analysis of spatial structure in the single-cell RNAseq data. To systemati-
cally characterize the spatial structure in a scRNAseq data, we summarized 
the gene signature associated with each spatial domain as a metagene (as 
described in the previous section). For simplicity, the overall expression of 
an expanded domain-specific metagene signature in each cell was quantified 
as the mean z-scored expression of all constituent genes in the signature.  
A t-SNE analysis was performed on this matrix using the Rtsne package  
with parameters pca_scale = T, perplexity = 35. Cell subpopulations  
with similar metagene expression patterns were identified by K-means 
clustering analysis (K = 9). We next annotated each cluster as belonging 
to the expression of one metagene. By comparing the binarized metagene 
expression population (Fig. 4b) and the K-means cluster annotations  
(Fig. 4a), all of the K-means clusters were assigned as uniquely associated 
with a single metagene.

For each subpopulation discovered from metagene clustering above, we 
found differentially expressed (DE) genes for the population (two-sample t 
test, unequal variance, P < 0.05). With the DE genes, we carried out Gene 
Ontology enrichment analysis (using hypergeometric test) for each of the nine 
subpopulations to construct a functional enrichment profile (hypergeometric 
test, top 500 DE genes analyzed per group, multiple hypothesis51 corrected 
P < 0.05; Fig. 4). Here we used genes expressed in glutamatergic cells as the 
background gene-set when doing enrichment analysis.

Ref. 27 also provides layer information for a glutamatergic cell subset based 
on the layer from which the cells were manually dissected using different 
Cre-lines. To test whether the extracted subpopulation based on metagenes 
is enriched for a certain manually dissected layer of cells, we also performed 
hypergeometric test corrected for multiple hypothesis comparing manual 
annotations of cells to our HMRF-domain-based annotations.

Visualization of spatial domain and cell-type-specific variations. We cre-
ated box plots to visualize the range of expression values for cells in different 
domains and for different cell types. In addition, to evaluate cell type tran-
scending effect of domain signature genes, for each gene, we grouped cells 
by (cell type, spatial domain) pair, and plotted the expression distribution 
across groups ordered by spatial domains. Groups with less than four cells 
were removed, as these skewed the comparison.

Morphological analysis. We loaded the cell segmentations as regions of inter-
est files (ROI) in ImageJ52, then used the Measure tool available in ImageJ 
to quantitatively measure over 15 morphological features for individual 
cells. We compared the distributions across different cell types by using the 
Kolmogorov–Smirnov test. Statistical significance is judged by both 1) signifi-
cance in at least seven of eight one-versus-one tests (P < 0.05 per test), and 2) 
significance in one-versus-rest test (P < 0.0001).
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Code availability. Code has been deposited at https://bitbucket.org/qzhud-
fci/smfishhmrf-py.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. Expression data, spatial coordinates, SVM predictions, 
HMRF domains, expression box plots categorized by domains and cell types, 
and interactive visualizations are available at http://spatial.rc.fas.harvard.edu. 
The scRNA-seq dataset referenced in this study is GSE71585.

39. Caicedo, J.C. et al. Data-analysis strategies for image-based cell profiling. Nat. 
Methods 14, 849–863 (2017).

40. Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene 
expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 
(2002).

41. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional 
changes and characterizing heterogeneity in single-cell RNA sequencing data. 
Genome Biol. 16, 278 (2015).

42. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 
12, 2825–2830 (2011).

43. Li, S.Z. Modeling image analysis problems using Markov random fields. in Handbook 
of Statistics Vol. 20, 1–43 (Elsevier Science, 2003).

44. Rousseeuw, P.J. Silhouettes: a graphical aid to the interpretation and validation of 
cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

45. Obayashi, T. & Kinoshita, K. COXPRESdb: a database to compare gene coexpression 
in seven model animals. Nucleic Acids Res. 39, D1016–D1022 (2011).

46. Moffat, A. & Zobel, J. Rank-biased precision for measurement of retrieval 
effectiveness. ACM Trans. Inf. Syst. 27, 1–27 (2008).

47. Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of clusters in a data 
set via the gap statistic. J. R. Stat. Soc. Ser. B. 63, 411–423 (2001).

48. Dempster, A.P., Lamb, N.M. & Rubin, D.B. Maximum likelihood from incomplete 
data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977).

49. Feng, D., Tierney, L. & Magnotta, V. MRI tissue classification using high-resolution 
Bayesian hidden Markov normal mixture models. J. Am. Stat. Assoc. 107, 102–119 
(2012).

50. Brélaz, D. New methods to color the vertices of a graph. Commun. ACM 22, 
251–256 (1979).

51. Storey, J.D. & Tibshirani, R. Statistical significance for genome-wide studies. Proc. 
Natl. Acad. Sci. USA 100, 9440–9445 (2003).

52. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of 
image analysis. Nat. Methods 9, 671–675 (2012).

https://bitbucket.org/qzhudfci/smfishhmrf-py
https://bitbucket.org/qzhudfci/smfishhmrf-py
http://spatial.rc.fas.harvard.edu
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71585 


1

nature research  |  reporting sum
m

ary
April 2018

Corresponding author(s): Guo-Cheng Yuan

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection None.

Data analysis We use custom algorithms to analyze the data. The software package developed in this study has been deposited at  
https://bitbucket.org/qzhudfci/smfishhmrf-py.   Other packages are described in the Methods section. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Expression data, spatial coordinates, SVM predictions, HMRF domains, and expression box-plots categorized by domains and cell types, and interactive 
visualizations are available at https://spatial.rc.fas.harvard.edu.  The scRNAseq dataset referenced in this study is GSE71585.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size One mouse brain was assayed by seqFISH due to experimental cost. No sample size was  
calculated.

Data exclusions No data were excluded from analysis.

Replication The reproducibility of seqFISH assays was established elsewhere in previous publications  
(Lubeck et al. 2014; Shah et al. 2016a, Shah et al 2016b). Here only one mouse brain was  
assayed. 

Randomization No randomizaton was considered.

Blinding No blinding was considered.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C57BL/6 with Ai6 Cre-reporter (uncrossed) (Jackson Laboratories, SN: 007906) female mice  
aged 50–80 days were anesthetized with isoflurane according to institute protocols (protocol  
#1701-14) (Madisen et al., 2012). 

Wild animals None.

Field-collected samples None.
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