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Abstract

Cooperative actions of extrinsic signals and cell-intrinsic transcription factors alter

gene regulatory networks enabling cells to respond appropriately to environmental

cues. Signaling by Transforming Growth Factor type β (TGFβ) family ligands (eg, Bone

Morphogenetic Proteins [BMPs] and Activins/Nodal) exerts cell-type specific and

context-dependent transcriptional changes, thereby steering cellular transitions

throughout embryogenesis. Little is known about coordinated regulation and tran-

scriptional interplay of the TGFβ system. To understand intra-family transcriptional

regulation as part of this system’s actions during development, we selected 95 of its

components and investigated their mRNA-expression dynamics, gene-gene interac-

tions and single-cell expression heterogeneity in mouse embryonic stem cells (mESCs)

transiting to neural progenitors. Interrogation at 24 hour intervals identified 4 types

of temporal gene transcription profile that capture all stages, that is, pluripotency, epi-

blast formation and neural commitment. Then, between each stage we performed

esiRNA-based perturbation of each individual component and documented the effect

on steady-state mRNA levels of the remaining 94 components. This exposed an intri-

cate system of multi-level regulation whereby the majority of gene-gene interactions
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display a marked cell-stage specific behavior. Furthermore, single-cell RNA-profiling

at individual stages demonstrated the presence of detailed co-expression modules

and subpopulations showing stable co-expression modules such as that of the core

pluripotency genes at all stages. Our combinatorial experimental approach demon-

strates how intrinsically complex transcriptional regulation within a given pathway is

during cell fate/state transitions.
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1 | INTRODUCTION

Embryonic stem (ES) cells provide an ideal in vitro system for recapitu-

lating the cell states and subpopulations in early mammalian embryos.

Most studies initially focused on how ES cell pluripotency states are

maintained and, more recently, how these cells then transit to next

cell states or how somatic cells can be reprogrammed to a pluripotent

stem cell state. Mouse (m)ES cells can be kept in the pluripotent gro-

und state by inhibition of FGF signaling and GSK3 activity using two

small-molecule compounds (named 2i) 1. Their naïve pluripotent con-

dition, which better resembles the inner cell mass of mouse blasto-

cysts, is obtained by adding BMP4 and Leukemia Inhibitory Factor

(LIF), making them more prone to differentiation cues and hence to

exit from pluripotency in cell culture. Removal of all such exogenously

added factors results in differentiation to the neural lineage with rea-

sonably high efficiency 2. The transitions herein include first the rapid

conversion from mES cells to epiblast-like cells (EpiLCs), resembling

primed epiblast stem cells (EpiSCs) from early mouse embryos, and

can be accomplished by using growth-factor free N2B27-medium 3.

When such cells are then cultivated for a prolonged period of time

they will form neural progenitor (NP) cells with increased, transient

Sox1 expression after 96 h and, later on, the presence of more differ-

entiated (including neuronal) cells.

TGFβ family signals, including BMPs and Activins/Nodal, exert

cell-type specific, context-dependent effects, which sometimes are

opposite 4,5. Signaling occurs through ligand-activated receptors, initi-

ating receptor-activated phospho-Smad (Figure 1A) and non-Smad

(kinase-)driven cascades 6-9. It requires strict control and fine-tuning

in various ways, including by a multitude of Smad-interacting proteins,

for example, transcription factors (TFs) 10-13. The controls involve tran-

scriptional autoregulation and synexpression, as well as feed-forward

or feedback mechanisms, acting on the transcription of the signaling

system components 14-19. Altogether this mounts the appropriate

transcriptional response in target cells 20-22, which is crucial for

embryogenesis, tissue/organ formation and, in the adult, repair after

injury 23-27. Despite significant efforts in identifying and experimen-

tally addressing these regulatory mechanisms, an integrated under-

standing of the transcriptional dynamics of the TGFβ-family system,

and their gene–gene interactions, as a whole is not readily available.

The often used knockout or knockdown approach of just one system

component causes changes in expression of multiple other system

components, suggesting compensatory mechanisms that will (co-)

determine the phenotype. Appropriate examples are the knockout of

Smad1/5 in mouse embryonic urogenital mesenchyme, resulting in

adult gonadal tumors that overproduce Activin/Inhibin and display

phospho-Smad2/3 hyperactivation 28,29, and ectopic anterior Nodal

mRNA expression in Smad5-knockout early post-implantation

embryos 30. Such genetic perturbations have proven valuable to dis-

sect the developmental role of TGFβ-system genes, sometimes includ-

ing their epistasis, both in vitro (in ES cells, 32,33) and in vivo (mouse

embryos, 30,34).

Transcriptional regulatory network (TRN) assembly using

genome-wide expression data from cells grown and collected in bulk

is extensively used to obtain a systems biology type of insight 31,

while recent technologies paved the way to perform single-cell analy-

sis combined with CRISPR-based perturbations. However, it remains

Significance Statement

Signaling pathways play pivotal roles during embryogenesis.

Extrinsic signaling is transmitted through intracellular pro-

teins that ultimately converge on the transcription regula-

tory network, which steers cell fate and differentiation. To

study the exact role of such top-down pathways during

development, researchers have historically used single-

component perturbations with read-out time points often

covering multiple developmental stages. By systematic pro-

filing of multiple components of the TGFβ/BMP pathway

using time-series, perturbations and single-cell analysis, this

study shows that this pathway should be considered an

intricate intra-dependent network of individual components

and considerably cell-stage specific. Hence, interpretation of

the consequences of single-gene perturbation or knockout

in lineage-progressing cells, including for optimizing ex vivo

stem/progenitor cell differentiation, should occur with cau-

tion regarding stage and transition.
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challenging to determine an unequivocal and direct causal link

between the initial perturbation and the observed phenotype(s) over a

long period of time. Secondary effects can accumulate rapidly and can

lead to inaccurate understanding how each signaling and/or network

component is connected. We anticipated to overcome some of these

limitations and aimed for a highly focused, but comprehensive and

integrative analysis of the TRN underlying the control of mRNA levels

of TGFβ system components, thereby governing both cell fate(s) and

the consecutive transition(s) between cell stages.

2 | MATERIALS AND METHODS

2.1 | Cell cultures

Sox1-GFP mES cells (A. Smith, Cambridge, U.K.) were maintained

feeder-free on 0.1% gelatin-coated plates in 2i + LIF medium (N2B27

with 1 μM PD0325901 (Axon, 1408), 3 μM CHIR99021 (Axon, 1386),

1000 U LIF/ml (Millipore, ESG1107). mES cells were passaged at

high-density (105 cells/cm2) for at least three passages before the

experiments started. Naïve mES cells were obtained by transfer from

2i + LIF medium to N2B27 + LIF (1000 U/mL) + BMP4 (10 ng/mL;

R&D Systems).

2.2 | Induction of early NP cells

mES cells were differentiated to NP cells 2, but this was optimized for

robustness and reproducibility: for neural differentiation the cells

were transferred from 2i + LIF to N2B27 on 1% growth-factor

reduced (GFR) Matrigel (hESC-qualified, Becton Dickinson)-coated

6-well plates (3x104 cells/cm2). At day-2, after 48 h in N2B27, EpiLCs

were generated; these were dissociated with Accutase

(ThermoFisher) and replated on freshly 1% GFR Matrigel-coated

12-well plates at 4x104 cells/cm2 in N2B27. After another 48 h,

hence 96 h in N2B27 in total, these day-4 cells show high Sox1

(−driven GFP) levels and are considered early NP cells. To obtain neu-

ral cells, these NP cells are replated on freshly 1% GFR Matrigel-

coated 12-well plates at 6x104 cells/cm2 in N2B27 + 10 μM Rock

inhibitor (Stemcel, Y-27632) for 24 h. Accutase combined with gentle

repetitive pipetting was used to obtain near-single-cell suspensions.

2.3 | Sox1-GFP quantification and indirect
immunofluorescence

Sox1-GFP+ cells were measured at day 0, 2, 4 and 10 using the Aria II

platform and normalized to day-0 (see Figure S1C). For Figure S1B,

cells were fixed for 10 min with ice-cold paraformaldehyde and

blocked for 30 min at 24�C with 0.1% Triton X100-1% BSA in PBS.

Anti-Oct4 (Abcam, ab19857), anti-Nanog (Abcam, 80 892), anti-

Tubb3 (Abcam, ab78078) and anti-GFP (Abcam, ab13970) (all at

1:1000) were used, with DAPI as nuclear counterstain (Life Technolo-

gies, D1306).

2.4 | Selection of TGFβ-centric network genes

The comprehensive, manually curated gene list (n = 118) represented

all layers of the signal transduction cascade. To identify and enrich for

TFs two available microarray datasets (GSE11523, GSE29005) were

used, for they were generated using similar cells 5,35. We performed

hierarchical clustering using Pearson correlation scores and average

linkage to determine the states and transtions. Differentially

expressed genes (DEG) were called using a SAM-test with fold-change

>2 and P-value <0.05. DEG were filtered based on GO terms

(0003677, 0006355, 0003700, 0006350, 0045449, 0043565) or

presence in AnimalTFDB (http://www.bioguo.org/AnimalTFDB/).

Remaining genes were prioritizedvia ToppGene and and training

parameters Pathway, Pubmed and Interaction. The curated and filtered

gene lists were then combined and a final selection was based on

qPCR expression level statistics, considering also detection level,

primer efficiency and variability.

2.5 | esiRNA-mediated perturbation

At day 0: mES cells (105 cells/cm2) in 2i + LIF were reverse-

transfected with a mix of 200 ng esiRNA (100 ng/μl, Sigma) and 2 μL

PowerFect (Tebu-Bio) in 110 μL buffer solution/well of a 0.1%

gelatin-coated 12-well plate. After 6 h at 37�C, the cells were replated

in either N2B27 (for differentiation) or N2B27 + LIF + BMP4.

At day 2: EpiLCs (6x104 cells/cm2) were reverse-transfected with

100 ng (100 ng/μl) esiRNA and 1 μL PowerFect in 55 μL buffer per

well of a GFR Matrigel coated 24-well plate. After 6 h at 37�C, the

cells were replated in N2B27 medium.

In both transfection conditions the cells were lysed and RNA was

harvested 48 h post-transfection, that is, as BMP4 + LIF, EpiLC or NP

cell state. In addition, for each sample the endogenous mRNA levels

6 h post-transfection were analyzed by RT-qPCR. A knockdown is

scored sufficient if at least a 50% reduction of the transcript was

observed.

2.6 | High-throughput RT-qPCR

RNA was extracted and processed with the RNeasy Micro Kit

(Qiagen). For the higher-throughput esiRNA-based screening the Total

RNA Purification 96-Well Kit (Norgen) was used. RNA was quantified

with Nanodrop (Nanodrop Technologies). mRNA was converted into

cDNA using SuperScript III First-Strand Synthesis SuperMix

(ThermoFisher, 18 080 400). Primer sequences were obtained from

PrimerBank (http://pga.mgh.harvard.edu/primerbank/); if not avail-

able here, they were designed according to PrimerBank set of rules

with addition of an intron-exon boundary. All primers were validated
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for efficiency, specificity and dynamic range at the same annealing

temperature (60�C) to ensure accurate parallel amplification (Suppl.

Table 2, PCR primers). Primers (15 μL/well, at 10 μM) and perturba-

tion samples (12.5 μL/well at 5 ng/μl) were separately stored frozen in

96-well plates before shipping on dry ice to the TATAA Biocenter

(Prague) for high-throughput quantitative PCR (HT-qPCR) on the

Biomark-HD platform according to Fluidigm’s instructions for SYBR-

green based quantification. Each sample plate contained at least 3 con-

trol wells, that is, a no-template control, gDNA control and total refer-

ence cDNA to account for confounding technical properties during

downstream processing (see Supplemental Data).

2.7 | Temporal expression analysis and cluster
determination

Time series data was clustered based on spearman correlation dis-

tance or gene expression dimensions were reduced with principal

component analysis on scaled and centered data. To determine

dynamic gene expression clusters the data were first converted to z-

scores and stable-genes were assigned to one cluster based on the

lowest expression range quartile. Next, kmeans using 3 centers was

used to create additional clusters.

2.8 | Identification of DEGs in perturbation
samples

Significant differentially expressed genes (DEGs) between target and

Renilla-luciferase negative control perturbation samples were deter-

mined with the Limma package in R using a false discovery rate of

10% and a minimal absolute log-fold change of 0.5. Probable off-

target effects were flagged and removed if a DEG was called in all per-

turbation samples per 96*96 Biomark chip.

2.9 | Association between gene expression range
and perturbation effect

A simple linear model between range of gene expression and pertur-

bation effect (gene is perturbed or gene as perturbator) was fitted for

all genes using the lm function in base R.

3 | RESULTS

3.1 | Inferring a dynamic, pathway-centric
transcriptional network

Gene transcription displays intrinsic stochasticity and susceptiblity to

small extracellular changes, and both may lead to variation that might

hinder correct interpretation of transcriptional read-outs of genes

when inferring a dynamic TRN during cell differentiation. Here, we

used ES cells whose culture medium and extrinsic factors therein can

be strictly controlled and when optimized they provide robust cell cul-

tures suitable for gene/protein perturbation studies. To reduce the

overall nested coefficient of variation, associated with both cellular

differentiation and subsequent sample processing, we introduced sev-

eral small modifications to a monolayer neural differentiation protocol
2 that improved the overall efficiency and reproducibility (Figure 1B).

This was a prerequisite for our systems-level approach that covers dif-

ferent consecutive cell stages and requires a systematic high-

throughput esiRNA-based perturbation approach combined with a

qPCR read-out (Figure S1A,B; see Materials and Methods; see Supple-

mental Information).

To start, we curated a list of TGFβ-system components and cell-

stage related TFs. First, we used an ensemble approach by aggregat-

ing the results of manual literature curation with transcriptome analy-

sis of neural differentiating mES cells and context-driven prioritization

(Figure 1C; Figure S1C). The latter was based on known genetic/bio-

chemical interactions, involvement in human disease and/or known

for causing phenotypes in knockout mice. Next, we ensured that the

chosen set of TFs encompassed all stages/transitions in our ES cell

system, that is, the ground (2i + LIF, denoted D0) and naïve state of

pluripotency (48 h, BMP4 + LIF, B4), EpiLCs (48 h, N2B27, N2) and

early NP cells (96 h, N2B27, N4), respectively. The final list covers

genes representing the entire cascade of Smad-mediated signaling,

including TFs, and has near-equal balance between BMP and Activin/

Nodal components (Figure 1D). We could successfully perturb the

majority of these components (ie, 73 out of 95), as determined by a

loss of at least 50% of the initial steady-state transcript levels at 6 h

post-transfection of esiRNA 36,37.

To document the transcriptional dynamics of the selected genes

we used high-throughput RT-qPCR (see Materials and Methods) and

profiled the changes in three complementary ways. The three vari-

ables that were considered to influence gene expression were single-

cell heterogeneity, differentiation time and epistasis or environmental

gene interactions (Figure 1E; Figure S1D). First, to assess changes

over time we performed transcriptional profiling at 24 h intervals (plus

B4, that is, Bmp4 + LIF, naïve state of pluripotency) in unperturbed

differentiation conditions. Next, to infer gene-gene interactions during

differentiation we performed transitional perturbations such that per-

turbation and read-out occur at consecutive cell stages. For this, we

independently perturbed the ES cells at two different time points, that

is, in D0 and N2 state (Figure 1E), respectively, and allowed their tran-

sit to the subsequent state/s. For the first time point this is a transi-

tion towards either B4 or N2 cells; for the second it was towards N4.

Altogether, for each gene that was responsive to esiRNA-based per-

turbation, as determined by our previously defined minimal threshold,

we collected 3 transition perturbation samples (ie, D0àB4, D0àN2

and N2àN4). Finally, we performed single-cell profiling in

unperturbed samples at both the start and end points (D0, B4, N2 and

N4) of our perturbation experiments to examine the role of transcrip-

tional heterogeneity at any of these given time points.
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3.2 | Temporal analyses confirm stage and
illustrate subgroup-specific profiles

During differentiation cells need to rewire their TRN to up or down-

regulate the right sets of genes for progressing to the next stage.

Despite the continuous nature of differentiation, individual cells can

be found enriched for certain states in vivo and/or in cell culture. This

can span multiple hours or even days wherein these cells display spe-

cific mRNA profiles, morphologic features and fate potential 32,38-41.

We used a 24 h time interval to profile mRNA transcript level changes

of the genes in our list. Principal component analysis (PCA) showed

that time follows the first principal component (PC1), which already

explains 53% of the observed variability between genes. Both ground

and naïve states of pluripotency were in close proximity, and furthest

apart from NP cells (Figure 2A). Hierarchical clustering verified that

between the naïve pluripotent (Nanog, Klf4, Tbx3 high) and NP (Pax6,

Zfp521, Cdh2 high) states a transient population is observed with high

Fgf5 and Pou3f1 expression resembling EpiLCs (Figure 2B) 40.

To group genes by temporal profile we performed K-means clus-

tering on standardized expression changes of all samples (except for

B4) and used four clusters to identify coarse, robust temporal profile

types (Figure 2C; Suppl. Table 1). The first cluster consisted of genes

such as Pou5f1, Fgf5 and Pou3f1 and they are moderately or highly

induced at the onset of differentiation, usually display high levels in

EpiLCs, and are then downregulated when entering neural fate 40,42.

The second cluster contained almost all neural-related genes (eg,

Pax6, Sox9, Zeb2, Zfp521) which gradually increased their mRNA levels
43. To our surprise this cluster also contained Id genes, which are

acknowledged downstream targets of Smad1/5 in BMP-stimulated

cells and known to inhibit differentiation, for example, neurogenesis
44,45. Genes of the third cluster showed rapid downregulation and

contained most genes related to the naïve core pluripotency network,

including Nanog, Esrrb, Klf4, Tbx3 46-49, but also Smad7 and the Nodal

receptor complex genes Acvr1b and Tdgf1 (Cripto-1). The fourth clus-

ter was the most stable cluster and included the two housekeeping

genes (Rpl13a and Psma3).

We also computed the overall expression range for all individual

genes and divided them accordingly to their quartiles (Figure 2D;

Figure S2A). While the temporal profiles explain the directionality of

the gene expression changes, the expression range might be an esti-

mator for transcriptional responsiveness, that is, how likely does a

gene need tight control during differentiation. As expected, genes that

had a low range of expression were found exclusively in the afore-

mentioned stable cluster (cluster-4). Interestingly, Smad1/5, Smad2

and Smad4 all map to this cluster. Smad7 and Smad9 displayed a much

larger expression range and fell in the highest-range group. Genes that

were documented as up (cluster-2) or downregulated (cluster-3) were

mostly genes that also displayed a larger range (Figure S2B). Finally,

we also assessed how transcriptional changes - for all genes as a

whole - changed during differentiation by assessing how expression

changes occurred over consecutive time intervals (Figure 2E;

Figure S2C). These changes were the largest at the beginning of dif-

ferentiation and they gradually decreased until around day-4

(96-120 h), which was then followed by a stabilization. And, even

though we selected only a limited number of 95 genes, their dynamics

showed resemblance with previous transcriptome studies in ES cell

states 5, indicating that the applied time windows captured all the

important cell transitions. Alltogether, these transcriptional changes

were particularly dynamic in the first 4 days and thus likely subject to

more specific regulation in this period.

3.3 | Transient perturbations demonstrate
dynamics and specificity of pairwise gene interactions

To understand how the selected components of our TGFβ-system

centric network could influence each others’ transcript level and

dynamic changes that occur during cell differentiation (Figure 2), we

performed systematic transitional perturbations of each component

that was responsive to esiRNA-mediated degradation (73 out of 95)

and documented the effect on the steady-state mRNA level of the

remaining 94 genes (Figure 1E). Of note, esiRNA-mediated perturba-

tions were chosen as they result in significantly lower off-target

effects while maintaining the same level of on-target effect 37. Alto-

gether a total of 20 805 putative gene-gene interactions originated

from 73 knockdowns and 95 read-outs at 3 transitions.

For each perturbation sample the knockdown efficacy was veri-

fied 6 h post-transfection and for the majority of the components we

still noticed significantly reduced mRNA levels at 48 h, that is, at the

read-out time point (Figure S3A). Using an extensive processing

framework to reduce possible batch effects, account for off-target

effects and impute missing data (see Materials and Methods), we

obtained 488, 457 and 298 significant interactions (adjusted P-

value<0.1 and absolute log-fold change>0.5) at time points B4, N2

and N4, respectively (Figure S3B, Suppl. Table 3). The lower number

at N4 may be explained in part by technical factors, such as a more

variable start population at N2 and a generally lower knockdown effi-

cacy at the 48 h read-out timepoint (Figure S3A) and thus explaining

the observed decreased effect size and significance at N4

(Figure S3C). We retrieved many known interactions at each stage
33,50-53 and hence consider our method and used parameters sensitive

and strict enough to minimize off-target effects and detect true gene–

gene interactions, including previously validated interactions (Suppl.

Table 4). Of note, the number of interactions for each perturbed gene

resembled a power-law degree distribution, a typical characteristic for

many biological networks 54,55. In agreement, we observed that

Pou5f1 and Sox2, two important TFs in mES cells, occupy the first

and third position, respectively (Figure S4A).

3.4 | The majority of gene interactions are cell-
stage specific and driven by a limited number of
transcription factors

We observed a roughly equal number of positive and negative inter-

actions. A positive or activating interaction (green arrow, Figure 3A)
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signifies that a knockdown of a given gene caused a downregulation

of one of the genes from our list, while a negative or inhibitory inter-

action (red blunt end, Figure 3A) means an upregulation of a gene

from the list upon a single knockdown. Each gene–gene interaction

over all three cell transitions studied here can be classified as one of

27 (=33) interaction types, that is, at each transition a specific interac-

tion can be positive, negative or neutral (no significant effect). These

types were further aggregated into 7 interaction-type clusters based

on the stability and direction of an interaction in all three transitions

(see Materials and Methods). Their frequency percentages are sum-

marized in a table (insert in Figure 3A). Interestingly, the majority

(~85%) of all significant interactions were restricted to one specific

transition or cell stage (specific_upreg and specific_downreg)

(Figure 3B, purple and orange dots). For more than 10% of the inter-

actions, both interaction and direction were maintained in more than

one transition, but only a small fraction of interactions was present in

all three transitions.

To test whether most interactions were present, but not signifi-

cant in adjacent transitions, we measured the transcriptional change

similarities with pair-wise correlation scores for each gene in all per-

turbation samples between two transitions. The majority of such cor-

relations were positive, which suggests that most gene interactions

are most prominent at only one stage, but that the direction of the

interaction, either activating or inhibiting, does not readily change

with time (Figure S4B). This was most pronounced when comparing

B4 with N2, where the summit of the correlation distribution scores

shifted to more positive values (r ≈ 0.5) (Figure S4B). We also noticed

that many genes, including those encoding BMP-system components,

were subject to transcriptional regulation in very similar ways in both

B4 and N2. Taken together, the perturbations show that the majority

of gene-gene interactions are cell-stage specific, driven by a limited

number of TFs, and usually the interactions gradually fade out in adja-

cent cell stages.

3.5 | Epistatic interactions of transcription factors
often display a mixed effect on expression changes
during transitions

In order to evaluate whether TFs act as drivers or inhibitors of transi-

tions during neural differentiation we next assessed whether the

direction of interactions of single perturbations was consistent with

the direction of expression changes of their target genes in control (ie,

unperturbed) differentiation (Figure 3C, top panel, showing as exam-

ple one interaction for genes A-B). If the interaction direction is con-

sistent with the expression changes during a transition, this regulator

is considered to be a driver of that transition. In contrast, when the

majority of interactions is inconsistent with how genes behave in

unperturbed differentiation conditions, that gene is considered to

function as a transition inhibitor.

Remarkably, Pou5f1 and Skil displayed mostly a driver function in

the first two transitions (B4 and N2), but this was opposite at N4

(Figure 3C). This agrees with the important role of Pou5f1 in primed

mES cells (B4) and EpiLCs (N2) and the need to downregulate Pou5f1

to induce neural differentiation (N4). This is in accordance with their

declining mRNA levels at N4, which is necessary to commit to differ-

entiation 56,57. Other genes like Zeb2 have roughly an equal number

of consistent and inconsistent interactions, suggesting that Zeb2 pro-

tein (and possibly mRNA) levels are important to steer cells into one

specific lineage and suppress other lineages, and also promote cell

maturation, which is in line with Zeb2-knockout studies in nervous

systems in vivo 34,58-61 and ES cells 33. This hypothesis is supported by

examination of the target loci/genes to which Zeb2 binds in neural-

differentiating cells, in which Zeb2 is strongly upregulated [33;

Birkhoff, Conidi and Huylebroeck, data not shown]. The neural-

associated genes, such as Pax6, Cdh2 and Cxcr4, had positive interac-

tions with Zeb2, whereas known repressors, including for the neural

lineage, such as Id1, Id3 and Ovol2 had a strong negative interaction

with Zeb2.

3.6 | Multi-faceted transcriptional regulation of Id
genes

To identify key effector genes in our perturbation set-up, we deter-

mined the number of times a gene was significantly deregulated upon

any of the perturbations. Remarkably, three Id family genes were

within the top-5 most deregulated genes following the perturbations

(Figure 4A). Given that each of these 3 Id genes displayed medium-

high or high range of expression (Figure 2D) we analyzed if in general

genes with higher range of expression were more sensitive to deregu-

lation upon perturbations, as we had hypothesized previously

(Figure 2D). Doing so, we noted indeed a strong positive association

(Pearson’s r = 0.5, adjusted R2 = 0.25 and P-value = 7.18e-06)

between number of times a gene was significantly deregulated and its

gene expression range during differentiation (Figure S5A). Alterna-

tively, we did not find any strong association between gene expres-

sion range and the effect a single perturbed gene has on other genes

(Figure S5B).

To further examine the effect on the Id genes and assess whether

this also implicates that they are co-regulated and expressed in spe-

cific and defined modules, we visualized both the interactions and the

expression level changes for all three cellular transitions (Figure 4B).

All three Id genes exhibited increased mRNA levels during the B4

transition. They displayed unique as well as overlapping reactions,

while the pluripotency core TF-genes Sox2 and Pou5f1 together with

Smad2 and Smad4 appear to be common regulators at this stage.

Unexpectedly only Id2 showed to be positively regulated by interac-

tion with (ie, perturbation of) Bmp4/7 and Smad1/5, which encode

essential components of the BMP-pathway axis that is known to drive

Id expression 15,62,63. Also the previously Wnt-linked triade Esrrb 50,

Tcf7l2 and Stat3 64 showed negative interactions with both Id2 and

Id3. During N2 transition the role of Id1 was diminished and Id3

became the dominant target to be regulated. Furthermore, the major-

ity of interactions were positive, which might indicate the necessity of

Id3 upregulation to enter the EpiLC state. Next, during the N4
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transition Id1 was again elevated and many interactions were negative

on both Id1 and Id3. This suggests a model wherein cells in this early

progenitor phase start to induce both neural and non-neural genes

and that gene co-operation is needed to determine the final fate at

later stage.

To interrogate the directionality of inferred networks we assessed

the numbers and types of simple feedback loops (FBLs) consisting of

three nodes. We noticed that, although most individual comparisons

were not statistically significant, both the negative (N1-4) and positive

(P1-4) FBLs at N2 and N4 were lower compared to simulated data.

This implies that, during differentiation, the TGFβ-centric network is

rather unidirectional and hence master TFs in our network receive

only limited feedback (Figure 4C).

3.7 | Identification of gene co-expression modules
with single-cell RT-qPCR

To further explore the role of transcriptional regulation/variability of

our TGFβ-family centric list during ES cell differentiation, we also per-

formed single-cell RT-qPCR (sc-qPCR) at each time point (see also

Figure 1E and Supplemental Information). Despite our restricted num-

ber of genes, the cells clustered according to their time point as seen

with tSNE (Figure S6A) and follow a continuous path from day

0 (D0) to neural differentiation day 4 (N4) using the first 2 dimensions

in PCA space (Figure 5A). This accurate clustering, despite the afore-

mentioned low number of genes, is expected due to both our gene

selection approach (Figure S1C) and the high-quality data generated

by our sc-qPCR read-out. Indeed, the processed and normalized data

matrix (Suppl. Table 5) for the sc-qPCR data only contains about 8%

zeroes, which is at least an order of magnitude lower as seen in most

single-cell RNAseq (scRNAseq) datasets 65. As such, calculating gene-

gene correlation scores to detect gene co-expression modules can be

performed with high precision (Figure S6B) and resulted in the identi-

fication of at least 7 notable co-expression modules (Suppl. Table 6;

Figure S6B). For example, at least two of the previously discussed Id

genes, Id1 and Id2, comprise an interesting co-expression module

together with Zic3. These genes seem to be both upregulated in

BMP4-exposed cells (B4) and more differentiated cells (N4) without

addition of any cytokines (Figure S6C-D), which is in line with their

proposed roles in both maintenance and exit of pluripotency 74,75. To

further illustrate the relevance of these co-expression modules we

highlighted a set of 4 typical genes for 4 particular modules

(Figure 5B) that show distinct expression profiles over all time points

(Figure 5C). The first module displays high expression of core

pluripotency genes (Tbx3, Klf4, Nanog and Esrrb) that immediately

drop in expression between B4 and N2, when cells enter the EpiLC

stage. The second module is marked by genes that remain high in both

naïve ES cells and EpiLCs, such as Pou5f1, Tgif1, Skil and Etv5, and

which are often associated with early exit of pluripotency 57,66,67.

Therefore, these genes only decrease in expression between N2 and

N4. A third module consists of genes such as Fgf5, Bmpr1a, Pou3f1

and Smad4, each showing a spike in expression only in the EpiLC

stage and frequently linked to Smad mediated signaling 68,69. The last

group shows a strong increase at the most differentiated stage, N4,

with genes such as Zfp521, Pax3, Sox9 and Tagln. The latter genes are

known marker genes of different cell progenitors 70-73 and are both

co-expressed and upregulated at the N4 stage of differentiation,

suggesting that those cells likely still have a multipotent potential to

differentiate in different germ layers.

3.8 | Transcriptional heterogeneity between single
cells denotes subtle subpopulations indicating that
differentiation is not synchronous

To see if the observed transcriptional heterogeneity and co-

expression modules, as observed in Figures 5 and S6, might also result

in more detailed subpopulations within each time point, we further

subclustered the cells. This led to the identification of two subpopula-

tions in each of the first three time points (D0, B4 and N2) and three

subpopulations at N4 (Figure 6A).

Within these subpopulations we calculated the deviation from

the population mean for each gene separately (Figure S7A-D). This is

a simple and forward approach to assess which sets of genes play a

role and what their relationships are. mES cells that are kept in a gro-

und state exhibit overall lower variability for pluripotency and devel-

opmental related genes. However, using our approach we noticed

that a small group of cells showed slightly elevated mRNA levels of

Cdx2 (essential for trophectoderm in pre-implantation mouse

embryos; 76) and Sox17 (a marker for extraembryonic visceral endo-

derm at E6.0 and endoderm of mid- to late-gastrula stage embryos;
77), while mES cells kept in a naïve primed state exhibited reduced

levels for the naïve core pluripotency markers Tbx3, Nanog, Klf4, and

Esrrb (abbreviated here as quartet TNKE). This suggests that some

subtle priming occurs and that this stochasticity might allow cell fate

switches when the right cues are presented. Interestingly, it appears

that the quartet TNKE functions in a co-expression module, which

was also observed in Figure 5B, and that this is true in all identified

stages. Indeed, they were always enriched together in one of the sub-

populations in Figure 6A. This does not indicate that at each of these

time points there were cells that remain in their original pluripotent

state; rather it suggests that some cells had irregular kinetics for this

set of genes and hence were lagging slightly behind on their differen-

tiation path. The net consequence would then be that single-cell

expression analysis shows that in all stages a subset of cells is more

resilient to differentiation cues. Similar observations of associations

between transcriptional heterogeneity and differences in differentia-

tion or reprogramming have previously been documented for several

single factors, including Esrrb and Nanog, with particular focus on the

pluripotent state 78-81.

A more complex narrative applies to N4 with its three subpopula-

tions (see Figure 6A right & Figure S7D). Besides the aforementioned

delayed subpopulation (ie, 14 cells here in blue) there were two more

subpopulations (which can be described by six groups of gene expres-

sion dynamics): (i) a more neural-orientated group of 22 cells marked
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by higher average levels of NP-cell associated genes such as Zfp521,

Pax6, Cxcr4, Zeb2, Zic3 and Sox9, and (ii) the largest group of 39 cells

that showed slightly lower levels of neural mRNAs and higher levels

of specific combinations of genes, such as Stat3, Srf, Snai1, Tagln, Skil,

Pou3f1 and Cdh1. Some are known smooth-muscle related genes,

suggesting again that these progenitor cells are not fully restricted to

the neural lineage. In any case, groups of genes that define the differ-

ent subpopulations (the columns at each time point, Figure 6B)

remained relatively stable at different time points or cell states,

suggesting that the regulatory network that governs transcription at

transitions is robust, including to changes, although many transition-

specific interactions are formed and removed.

4 | DISCUSSION

We report an experimental strategy and dataset allowing the decon-

struction of a dynamic TRN that operates in conjunction with compo-

nents of a selected, prioritized and well-studied growth factor

signaling system in embryogenesis. We further enriched the selection

with ES cell state relevant transcription factors and also included

dynamic transitions of cultured ES cells. We further integrate three

transcriptional dimensions, that is, temporal dynamics, single-cell

expression heterogeneity, and gene-gene interactions as deduced

from esiRNA-based perturbations. These perturbations reduce the

target protein amount rather than totally removing the protein (eg,

like in most CRISPR/Cas-based experiments). RNAi-based perturba-

tions are fast, simple and often easier to interpret compared to

genetic knockouts 82-85. It also raises the interesting question as to

whether both types of perturbation, when applied to a signaling sys-

tem, will eventually result in similar conclusions or not in terms of

gene–gene interactions. With regard to cell lineage expansion or pro-

gression in vitro, where CRISPR-Cas based mutagenesis is being con-

sidered to obtain desired cell types with higher efficiency, and the

developmental and/or disease relevance of TGFβ-system genes, such

difference between the perturbation approaches could have impor-

tant conceptual, mechanistic and application consequences.

Our temporal profiling confirms the presence and gradual transi-

tion of at least three major cell states, that is, pluripotent mES cell,

primed EpiLC and early NP cell. EpiLCs are not to be confused with

epiblast stem cells (EpiSCs), which can be maintained for several pas-

sages using high doses of Activin and FGF, but resemble primarily the

anterior primitive streak 43. EpiLCs are on the contrary rapidly and

directly induced from mES cells and perhaps reflect a more transient

population, similar to cells allocated to the pre-gastrulating mouse epi-

blast 3. Since N2 or EpiLCs are in our experiments both a read-out

and perturbation time point, our data provides unique insight in this

transient population. We mapped four robust, temporal expression

profile types, and found that Smad1/5 and Smad2, and also Smad4

transcripts are enriched in the stable gene cluster. This suggests that

modifications of the already present protein, rather than transcrip-

tional modulation of the gene encoding such immediate-effector pro-

tein, play a more important role in the processing of TGFβ-family

ligand action and in the fine-tuning of Smad-mounted target gene

responses 86-88.

Inhibitory-Smad mRNA was strongly downregulated upon differ-

entiation, suggesting that mES cells require this negative feedback to

dampen Smad-signaling, which is in line with previous observations.

Surprisingly, three of the Id family genes end up in the neural cluster,

which contains genes that are upregulated during neural differentia-

tion. This is in contrast to studies showing that Id genes have a direct

negative effect on neural fate acquisition 44,45. Hence, this may be a

prime example of multipotent cells and how this is assisted by the

complex nature of the TRN that controls Id family mRNA levels. This

is further illustrated by the highly selective induction of Id3 and many

of its positive interactions in transition from mES cells to EpiLCs,

suggesting it is essential here (and without BMP added to the cells).

The majority of significant gene–gene interactions are cell-stage

specific and combinations of TFs that appear important for different

cell states and transitions. Pou5f1 is the prime regulator of the TGFβ-

system during the first two stages. Here, Pou5f1 teams-up with Sox2,

Skil and Smad4 to drive the establishment of the naïve state, whereas

Stat3 and Esrrb contribute to maintaining the ground state. However,

in the next stage Smads act mostly as transition inhibitors. Despite

our data obtained from perturbation-based interaction calling we can-

not infer whether Smad-dependent activity plays an exclusive role in

these processes, and it is likely that there are also Smad-independent

interactions. In an even broader context it would be of great interest

to simultaneously document the role and interplay with other signal-

ing pathways than those of the TGFβ(-Smad) family. For example,

complementary approaches are being developed that assess the activ-

ity of multiple signaling pathways and use a multiplex reporter gene

assay combined with next-generation sequencing 89. This principle

can also be taken to CRISPR-based (knockout) screens, down to the

single-cell level, in experiments that involve (co-)barcoding allowing

simultaneous identification of the knockout mutation and the single-

cell identity in RNA-sequencing. However, irrespective to whether a

knockdown or knockout strategy (for many individual targets) is used

to construct a gene–gene interaction network, it remains challenging

to probe the effective loss of activity of each of the targeted proteins.

Here we created a simple Boolean network based on a 50% reduction

cutoff, however one potential way forward would be to discretize the

different levels of the knockdown efficiency of each component and

see how that further correlates with different downstream effects.

Perturbation remains instrumental for studying the individual

gene or protein function, but inferring direct gene functions from

long-time experiments such as permanent knockouts should be done

with caution, for secondary effects are hard to account for and accu-

mulate fast. Here, we show that cellular responses to perturbations

during development are primarily driven by the cell stage. This is even

true for seemingly functionally similar cell types, such as the naïve

(B4) and primed (N2) cell states, which are about 48 h apart, believed

to be both pluripotent and capable of forming an embryo proper. Sec-

ondly, even within the same cell state, our results indicate that single

perturbations should be interpreted with care. For example, the Id

genes, which are implicated in many cellular differentiation processes
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either alone or together, respond in both diverse and unique ways to

our different perturbations at each stage. Finally, predicting a system

or network gene expression, including as response to perturbation,

remains a challenging task and will also require concurrent upscaling

of multidimensional datasets and development of novel multi-omics

read-out methods at the single-cell level.
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F IGURE 1 A systematic approach to deconstruct dynamic and centered transcriptional networks
A. Simplified overview of Activin/Nodal and BMP ligand receptor binding and Smad-dependent signaling. The latter is further divided in inhibitory
Smads and receptor-activated Smads that can form a trimeric complex with the common-mediator Smad Smad4. These activated Smads
accumulate in a time and amplitude specific manner in the nucleus. Here, they can team up with co-factors and TFs to stimulate or repress target
genes in a chromatin modulated context, and often including genes encoding system components itself. Non-Smad, kinase-driven cascades are
not shown. B. Cell states in our modified and optimized ES cell system. Brightfield and immunostaining pictures are representative and
photographed at same magnification, but not taken from the same cultures. Scale bar: 50 μm. C. Systems approach consisting of 4 phases:
(i) selection of pathway centric components and critical regulators, (ii) establishment of a robust in vitro differentiation system amenable for high-
throughput experiments, (iii) multi-level and integrative inference and (iv) downstream coupling of inferred network to biological system. D.
Overview of selected TGFβ-superfamily centric genes and custom annotation for 1. their molecular function (MF), 2. pathway specificity and
3. perturbation success. E. Diagram visualizing the three levels of transcriptional inference that were assessed in our optimized neural
differentiation system. Black and white striped flat rectangles illustrate transition based perturbations, that is, perturbation in one cell state and
read-out in a subsequent cell state. The grey colored circle is the B4 stage, that is, in BMP4 + LIF
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F IGURE 2 Transcriptional dynamics during neural commitment
A. Principal component analysis of 24 h time interval samples during neural differentiation. Grey arrow indicates direction of differentiation. B.
Heatmap showing genes (rows) and cells (samples) using correlation distances. Cell stages are indicated by the colors on top and established
marker genes are shown for each cell stage. Heatmap colors represent standardized expression values (z-scores). C. K-means (k = 4) cluster
profiles of standardized gene expression values over time. A loess regression curve to show the average profile for each group is shown in blue.
D. Boxplots showing the expression range of individual genes during differentiation. Colors represent range-specific subsets based on the quartile
values of the overall range distribution. E. Loess regression curve (blue) with confidence band (grey area) to depict the collective ranscriptional
changes between consecutive time intervals
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F IGURE 3 Cell-stage specific interactions and regulators
A. Diagram illustrating upregulating/positive (green arrow) and downregulating/negative (red blunt end) interactions. Examples and global
frequency of combinations are shown. B. Plot showing the logRatio (log Target/Ctrl) values of all significant interactions (rows) and colors indicate
the interaction type class, as shown in A, they belong to considering all three transition stages. C. Consistent interactions have directions in
agreement with the wild-type temporal expression profile for that transition stage and inconsistent do not, as exemplified (top). Dot plot showing
the top regulators, that is, most significant interactions upon perturbation, for each transition stage. The size and color of the dot is correlated
with respectively the total number of interactions and change of expression levels for the regulator (bottom)
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F IGURE 4 Perturbation sensitive genes and network characteristics
A. Barplot demonstrating the perturbation sensitivity of each gene, as measured by how often a gene is deregulated in all perturbation samples
over all transition stages. B. Network visualization of all individual Id gene (Id1-3) interactions in B4 (top), N2 (middle) and N4 (bottom). Node
colors represent changes in expression levels during transition, with red and blue depicting respectively increase and decrease of expression
levels. Red and green edges represent inhibiting and activating interactions respectively. C. Barplot showing the frequencies in real vs simulated
data of all the types of feedback-loops consisting of 3 nodes (top). Types of negative and positive feedback-loops are shown in numerical order
(bottom). * P < 0.01; Wilcoxon rank-sum test
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F IGURE 5 Single-cell RT-qPCR and co-expression modules
A. PCA plot showing the first and second principal component to illustrate the distribution of single cells at different time points. Grey arrow
indicates direction of differentiation. B. Heatmap depicting the pairwise correlation values between genes (Pearson’s r). C. Violin plots showing
the expression distribution at different time points for the indicated genes
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F IGURE 6 Single-cell subpopulations at individual time points
A. 2-D tSNE plot showing the distribution of single cells and subclusters in the indicated colors at individual time points. B. Diagram visualizing
the number of primed subpopulations in each stage (number of columns) and the gene specific clusters (row groups) together with their average
expression deviation from the overall mean. Lines connect the same genes over the different cell stages and line colors correspond with the gene
specific clusters from the previous cell stage
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Graphical Abstract

The contents of this page will be used as part of the graphical abstract of html only.
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Schematic illustration of a systems level approach to dissect the transcriptional and intra-dependent network of the TGFβ/BMP signaling pathway

in embryonic stem cells that gradually differentiate to neural progenitors.
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