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 ABSTRACT  Small cell lung cancer (SCLC) patient-derived xenografts (PDX) can be gener-
ated from biopsies or circulating tumor cells (CTC), though scarcity of tissue and 

low effi ciency of tumor growth have previously limited these approaches. Applying an established 
clinical–translational pipeline for tissue collection and an automated microfl uidic platform for CTC 
enrichment, we generated 17 biopsy-derived PDXs and 17 CTC-derived PDXs in a 2-year timeframe, 
at 89% and 38% effi ciency, respectively. Whole-exome sequencing showed that somatic alterations 
are stably maintained between patient tumors and PDXs. Early-passage PDXs maintain the genomic 
and transcriptional profi les of the founder PDX.  In vivo  treatment with etoposide and platinum (EP)  in 
30 PDX models demonstrated greater sensitivity in PDXs from EP-naïve patients, and resistance to 
EP corresponded to increased expression of a  MYC  gene signature. Finally, serial CTC-derived PDXs 
generated from an individual patient at multiple time points accurately recapitulated the evolving drug 
sensitivities of that patient’s disease. Collectively, this work highlights the translational potential of 
this strategy. 

  SIGNIFICANCE:  Effective translational research utilizing SCLC PDX models requires both effi cient 
generation of models from patients and fi delity of those models in representing patient tumor char-
acteristics. We present approaches for effi cient generation of PDXs from both biopsies and CTCs, and 
demonstrate that these models capture the mutational landscape and functional features of the donor 
tumors.  Cancer Discov; 8(5); 600–15. ©2018 AACR.       
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  INTRODUCTION 
 Small cell lung cancer (SCLC) is a high-grade neuro-

endocrine malignancy with a 5-year overall survival of 
approximately 5%. Among patients diagnosed with meta-
static (extensive stage) disease, the median overall survival is 

approximately 9 to 11 months with standard treatment ( 1–4 ). 
Because neither surgical resection nor repeat tumor biopsies 
are standard of care in metastatic SCLC, access to clinically 
relevant tissue is limited. Instead, SCLC research has relied 
heavily on preclinical models such as established cell lines, 
genetically engineered mouse models (GEMM), and more 
recently, patient-derived xenografts (PDX; refs.  5–8 ). 

 PDX models, generated via direct implantation of patient 
tumor tissue into a recipient mouse, have several theoretical 
advantages over other preclinical models. First, bypass of 
an  in vitro  intermediate potentially avoids bottleneck events 
or selection for fi tness in the  in vitro  environment ( 9 ). Sec-
ond, molecular and functional phenotypes can be correlated 
directly with patient characteristics and clinical response 
to therapies. The increasing use of PDX models in SCLC 
research underscores their importance to the fi eld ( 5, 10, 11 ). 

 Many solid tumors shed malignant cells into circulation, and 
collection of these rare circulating tumor cells (CTC) enables 
noninvasive serial tumor sampling ( 12–15 ). CTCs are highly 
abundant in patients with SCLC compared with patients with 
other solid tumor malignancies ( 16–18 ), and CTC number is 
prognostic and refl ects the changing burden of disease over the 
course of treatments ( 19 ). The development of PDX models 
from CTCs isolated by Ficoll density gradient marked a signifi -
cant advance for generation of SCLC preclinical models ( 20 ), 
eliminating the need for surgical resection or invasive biopsy. 
To date, a handful of CTC-derived SCLC PDX models have 
been described ( 11, 20 ). These were generated from samples 
that had a minimum of 400 CTCs per 7.5 mL blood, but the 
widespread application of this methodology to generate SCLC 
models is yet to be reported. Although live CTC enrichment can 
be achieved through application of microfl uidic devices ( 21 ), 
this approach has not yet been used for PDX generation. 

 Although the application of SCLC PDXs for preclinical stud-
ies is increasingly common, further characterization is needed 
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to assess how accurately these models reproduce properties of 
the human disease. SCLC tumors are known to have exten-
sive genomic alterations and a high mutational burden (22–
24). Furthermore, biallelic inactivation of TP53 and RB1 is 
nearly universal in SCLCs (22). These changes may undermine 
genomic stability, raising the concern that SCLC genomes 
may acquire additional genomic alterations and evolve rapidly 
when passaged in mice. The recent finding that PDX mod-
els of diverse tumor types acquire mutations with serial pas-
sages underscores this concern (25). Although copy-number 
variations appear conserved between CTCs and CTC-derived 
PDXs in a limited number of cases examined (20), whether the 
genomes of CTC-derived PDX models of SCLC accurately mir-
ror the patient’s biopsy has not yet been rigorously investigated.

Functional characterization of SCLC PDXs is also a critical 
metric of the utility of these models. SCLC tumors are classi-
cally highly sensitive to etoposide and platinum (EP; ref. 1). 
Among three PDX models treated with EP (20), responses in 
the models correlated with those in the donor patients. How-
ever, more extensive testing of how well SCLC PDXs reca-
pitulate chemotherapy sensitivity and acquired resistance, 
and how these profiles correlate with underlying molecular 
signatures, is needed.

Here, we describe the efficient generation of 34 PDX models 
of SCLC in a 2-year timeframe, utilizing both tissue biopsies 
and blood samples processed with an automated microfluidic 
device. We show that these models can be generated at high 
efficiency from CTCs, irrespective of enumeration, and that 
they faithfully recapitulate both the genomic and functional 
features of patient tumors at the time of model generation. 
We quantified in vivo sensitivity to EP in 30 PDX models and 
found that models derived from EP-naïve patients were more 
sensitive than models from patients previously treated with 
EP. Further transcriptome profiling of models revealed that 
increasing EP resistance correlates closely with activation of 
a MYC transcription program. Finally, serial models derived 
from an individual patient at multiple time points reflect the 
evolving clinical response of that patient’s tumor, emphasiz-
ing the potential application of these approaches toward 
studying acquired resistance.

RESULTS
Construction of an SCLC PDX Panel

Biopsy- and CTC-derived PDX models from patients with 
SCLC have been described (5, 20, 26), but there remains a pau-
city of SCLC models from patients with detailed correlative 

clinical data. PDXs generated after patient relapse are especially 
scarce because these patients rarely undergo a clinically indi-
cated biopsy. Currently, there are no published sets of sequen-
tial PDX models from patients with SCLC that can be used to 
study disease evolution. The key parameter, as yet uncertain, is 
the success rate of PDX generation from routine blood samples 
and tissue biopsies. We therefore focused on a population of 
patients with SCLC selected only on the basis of having clini-
cally progressive disease at the time of tissue or blood collection.

Between June 2014 and June 2016, we enrolled patients 
with known or suspected SCLC on Institutional Review 
Board (IRB)–approved protocols for collection of clinical 
data, blood, and tissue. Blood samples for PDX development 
were taken at the time of initial diagnosis or progression after 
a prior therapy, but not while a patient’s disease was currently 
responding to treatment. For each patient, SCLC CTCs were 
isolated from a 15 to 20 mL whole blood sample with the 
CTC-iChipneg device (27), with a typical transport time from 
patient to laboratory of 60 to 90 minutes. The CTC-iChipneg 
first excludes plasma, unbound antibody-coated beads, plate-
lets, and red blood cells through microfluidic size-based 
separation, and then directs nucleated cells (leukocytes and 
CTCs) into a single-cell stream through inertial focusing 
microfluidic channels, thereby enabling the highly efficient 
magnetic separation of anti-CD45/CD66b-tagged leukocytes 
(27, 28). The resulting product is highly enriched (104–105-fold) 
for unmanipulated and potentially viable CTCs (Fig. 1A). CTC-
enriched products were immediately prepared for subcutane-
ous injection into NOD/SCID gamma (NSG) mice. Animals 
were then monitored for tumor growth over a period of at 
least 6 months. From 42 processed blood samples, 16 ani-
mals developed palpable tumors, for an overall tumor growth 
efficiency of 38% [95% confidence interval (CI), 24–54] and 
a median latency of 115 days (Fig. 1B–D). Following previ-
ously described protocols as done in ref. 20, we generated one 
model from CTCs isolated by Ficoll gradient (Supplementary 
Table S1).

In a parallel effort, we also sought to generate PDX models 
of SCLC from patients undergoing a tissue biopsy. One extra 
core tumor biopsy was collected from patients with known 
or suspected SCLC when they were undergoing a biopsy for 
clinical purposes. Core tumor specimens, generally 19 to  
22 gauge and approximately 4 to 8 mm in length, were 
obtained from patients and implanted into the flanks of NSG 
mice within 2 hours of the biopsy procedure (Fig. 1A; Sup-
plementary Table S2). From 18 implanted specimens from 
patients with confirmed SCLC, 16 developed into xenograft 

Figure 1.  Generation of a population of SCLC PDX models. A, Strategy for SCLC PDX development. PDX models were initiated from whole blood via 
CTC isolation (red, top), core tumor biopsies (blue, bottom), or effusion specimens. Whole blood samples were processed via the CTC-iChipneg device, 
which enriches CTCs in a three-step process: (1) separation of nonnucleated cells and plasma by size hydrodynamic diameter using a microarray of posts, 
(2) inertial focusing through an asymmetric serpentine channel to position cells in a single line, and (3) negative selection of leukocytes decorated with 
anti-CD45/CD66b magnetic beads by magnetic separation (yellow arrow = magnetic deflection). Biopsy, effusion, and CTC samples were injected s.c. into 
the flanks of NSG mice, monitored for tumor emergence (P0 latency), and then serially passaged (P1, P2). Tumor samples were obtained for molecular 
and pathologic analysis and for cryopreservation of the model. B, Panel of SCLC PDX models with abstracted patient clinical courses. Models derived 
from either CTCs (red circles) or biopsies/effusions (blue circles) were generated at various time points throughout the treatment of the patient (arrows). 
Arrows are not drawn to scale with respect to time on treatments. C, Latency to (P0) tumor emergence for models initiated from June 2014 to June 2016. 
D, Efficiency of PDX generation from CTCs and biopsies (Bx)/effusions (Eff). Total attempts in gray, successful in color. E, Pathologic confirmation of 
SCLC. Shown are SCLC histology (hematoxylin and eosin staining) comparison between biopsy and PDX derived from either CTCs (MGH1504-1) or biopsy 
(MGH1512-1), as well as IHC stains for neuroendocrine markers and of nuclear RB1. Direct comparison of histology and IHC stains in a patient sample 
and corresponding CTC-derived PDX model (MGH1515-1) are also shown. Additional examples are shown in Supplementary Fig. S1. Chrg., chromogranin; 
FFPE, formalin-fixed, paraffin embedded; RBC, red blood cell; Syp., synaptophysin; WBC, white blood cell.
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 Table 1.    Characteristics of PDX models  selected for whole-exome sequencing  

Model PDX type  a  
Biopsy to model 
initiation (days)  b  

P0 latency 
(days)  c  

Patient clinical 
stage

Patient prior 
therapies

 MGH1504-1 CTC 3 160 LS None

 MGH1512-1 Biopsy 0 60 ES EC, irinotecan

 MGH1514-1 CTC 4 130 ES None

 MGH1515-1 CTC 8 138 ES None

 MGH1518-1 Biopsy 0  81 ES None

 MGH1525-1 CTC 1  45 ES None

 MGH1528-1 CTC – 107 ES EC, topotecan, EC, 
paclitaxel, exp1, exp2, 
vinorelbine

   Abbreviations: EC, carboplatin and etoposide; ES, extensive stage; exp, experimental therapy on clinical trial; LS, limited stage.  
a PDX type indicates if the model is CTC-derived or biopsy-derived.  
b For all CTC-derived models except MGH1528-1, a biopsy was collected near the time of CTC collection, without any intervening therapy, and these 
were the patient tumor samples used for whole-exome sequencing. Time from biopsy to model initiation is shown.  
c P0 latency indicates time from tissue implantation to when a tumor was fi rst palpated on the fl ank of the recipient mouse.   

tumors within 6 months, for an overall growth effi ciency of 
89% (95% CI, 74–99) and a median latency of 78 days ( Fig. 1B 
and C ; Supplementary Table S1). In addition, one PDX model 
was generated from a malignant pleural effusion. 

 Once the founder (P0) PDX tumors reached a size of 
approximately 1 to 1.5 cm in diameter, they were dissected, 
portions of the tumor material were passaged into additional 
NSG mice, and tissue was preserved for further analyses 
( Fig. 1A ). The latency for growth of passaged tumors was 
typically 2 to 6 weeks, considerably shorter than for P0 tumor 
growth. There were no model failures after initial P0 tumor 
emergence; all xenografts were successfully maintained for at 
least two passages, and all attempts at regrowth from cryopre-
served specimens were successful (Supplementary Table S1). 
In total, within the specifi ed timeframe for tissue collection, 
34 SCLC models were established from 27 separate patients 
( Fig. 1B ). These models were generated from patients with a 
range of time points in their clinical course of SCLC, includ-
ing 15 models from patients prior to receiving any SCLC-
directed therapy, and 19 from patients after at least one line 
of therapy. From 3 patients, serial models were developed at 
multiple points over the course of their treatments ( Fig. 1B ). 

 To confi rm that the PDX tumors were pathologically con-
sistent with SCLC, histologic and immunohistochemical 
analysis of the P0 PDX models was performed by a thoracic 
pathologist (M. Mino-Kenudson) and compared with the 

patient biopsy when available. In all cases examined, the PDX 
model demonstrated histologic and immunohistochemical 
features consistent with SCLC, including neuroendocrine 
marker expression and absence of nuclear RB (representative 
examples are shown in  Fig. 1E  and Supplementary Fig. S1). 
Detection of CD45 was used to rule out lymphoproliferation 
and was negative in all 30 models tested ( Fig. 1E ; Supplemen-
tary Fig. S1, data not shown). Histologic comparison of PDX 
and corresponding patient biopsy samples showed strong 
similarity across the models (Supplementary Table S1).  

  Genomic Characterization of SCLC PDX Models 
 We selected seven PDX models for whole-exome sequenc-

ing (WES;  Table 1 ) and examined the somatic alterations in 
these models (Supplementary Tables S3 and S4). To account 
for contaminating mouse tissue DNA in the PDX tumor 
samples, computational analyses excluded mouse reference 
sequencing reads (Methods). Consistent with the known 
genomic hallmarks of SCLC ( 22–24, 29, 30 ), WES aided in 
the identifi cation of inactivating alterations of  TP53  and  RB1
in all models and confi rmed biallelic loss of these tumor-
suppressor genes in most cases ( Fig. 2A ; Supplementary Table 
S4). MGH1514-1 and MGH1512-1 were only found with 
heterozygous loss of  TP53  and  RB1 , respectively, which may 
be due to the technical limitations of WES in detecting larger 
complex genomic rearrangements that commonly affect these 

  Figure 2.       Genomic alterations and expression profi les in SCLC PDX models.  A,  Spectrum of genomic alterations in the panel of 7 PDX models. Top 
plot, biallelic genomic inactivation of  TP53  and  RB1 . Bottom plot, notable alterations in PDX models beyond  TP53  and RB1 referring to previously identi-
fi ed signifi cantly mutated genes in SCLC (*; ref.  22 ) and to mutated cancer census genes of therapeutic relevance (#). The bottom plot displays the type 
of base-pair substitution referring to the representative data of PDX P0 (Supplementary Table S2).  B,  Detection of the out-of-frame fusion transcript 
 TP53-ITNL2  in MGH1514-1 by paired-end RNA sequencing (RNA-seq).  C,  Pearson correlation matrix for passage 0 and passage 1–2 tumors from each 
model, using genes with highly variable transcription levels across all samples (max RPKM > 3, coeffi cient of variation > 1, 1,568 transcripts). Source of 
each PDX model (C, CTC; B, biopsy) is indicated in parentheses next to the model number.  D,  Clustering analysis on transcriptome sequencing data of PDX 
models ( n  = 13 from 7 patients) and human SCLC tumors ( n  = 20, from ref. 22) selected to represent the neuroendocrine-high and -low groups as previ-
ously described. Clustering performed on genes that distinguish human primary tumors to avoid signatures associated with human immune and stromal 
infi ltrates. All data processed with RNA-seq pipeline for human+mouse reads.   
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loci in SCLC. However, paired-end transcriptome sequencing of 
MGH1514-1 revealed an out-of-frame chimeric transcript harbor-
ing TP53 exon 1 fused to ITNL2 exon 8 (Fig. 2B), thus implicating 
biallelic genomic loss of TP53 in this tumor. Although biallelic 
genomic alterations of RB1 were not detected in MGH1512-1, 
this tumor had low abundance of RB1 transcripts (Fig. 2D) 
and lack of RB staining in IHC (Fig. 1E), indicating a func-
tional loss of RB1 in this tumor.

Additional alterations were found in genes encoding chro-
matin-modifying enzymes (e.g., CREBBP, EP300, and MLL3), 
SLIT2, and NOTCH1 (Fig. 2A; Supplementary Table S4), which 
were previously identified as significant alterations in SCLC 
(22–24). Although events that augment MAP kinase pathway 
activity are thought to be unusual in SCLC, two models har-
bored alterations in this pathway (Fig. 2A): MGH1525-1 had a 
point mutation in the DFG motif of BRAF thought to activate 
MEK/ERK signaling (BRAFG596C; refs. 31, 32); and MGH1514-1,  
which was derived from a never-smoker with de novo SCLC, 
harbored an activating EGFR mutation (EGFRdel_exon19). Neither 
case had any histologic evidence of concurrent non-SCLC. 
All tumors with the exception of MGH1514-1 revealed a high 
rate of cytosine to adenine (C:A) nucleotide transversions (Fig. 
2A; Supplementary Table S3), which reflects tobacco-induced 
mutagenesis (33) and which is consistent with the smoking 
history of the patients.

To complement the genomic study of the models, tran-
scriptome sequencing was performed to determine the 
expression profiles of serial passages (P0 and P2; Supple-
mentary Table S5). In order to assess the fidelity of these 
expression profiles within a given model, we compared the 
transcripts with the highest variability across all samples to 
generate a correlation matrix (Fig. 2C). Paired samples from 
the same model correlated tightly and were uncorrelated with 
samples from other PDX models, which emphasize reproduc-
ible expression profiles among biological replicates from 
different passages of the same PDX. Although paired-end 
transcriptome sequencing could not be performed on the 
matched patient biopsies, the PDX mRNA expression profiles 
were mapped to a previously published database of 20 human 
tumors (22). Using the defining features of the dominant 
clusters within this dataset, six of seven PDX models showed 
strong similarity with the neuroendocrine-high profile, with 
only one PDX, MGH1515-1, clustering with the neuroen-
docrine-low tumors (Fig. 2D). Although the dominant PDX 
expression profiles mapped to primary tumor clusters, each 
model harbored distinct and patient-specific transcriptional 
signatures (Supplementary Fig. S2D). To investigate these 
PDX-specific features, we identified transcripts that corre-
lated strongly with either high expression in one model or 
absent expression in one model, and then filtered through 
the Molecular Signatures Database (MSigDB V6.0) preset 
gene families’ lists for cancer-related genes (Supplementary 
Fig. S2; Supplementary Table S6). Interestingly, this analysis 
highlighted changes in the expression in pathways known to 
be important in SCLC. None of the models showed high-level 
amplification of any MYC family genes, but each MYC family 
member displayed elevated expression in one specific PDX 
model (Supplementary Fig. S2). Although the Notch signal-
ing pathway has been implicated in the development of SCLC 
(22, 34–36), transcriptome sequencing revealed model-specific 

expression of NOTCH receptors and ligands. MGH1514-1, 
which harbors an activating EGFR mutation, is distinguished 
by elevated expression of EGFR as well as other MAP kinase 
pathway components including ARAF, CRAF, and MEKK1 
(Supplementary Figs. S2 and S3). Notably, EGFR mutations 
have been described in rare cases of SCLC in never-smokers 
(37), and SCLC transformation is an established mechanism 
of acquired resistance to EGFR tyrosine kinase inhibitors in 
EGFR-mutant non-SCLC (38–41). Thus, activated pathways 
and gene families vary across models, suggesting that the out-
come of functional studies may greatly depend on the specific 
PDX model used for investigation.

Genomic Fidelity of PDX Models Compared with 
Patient Biopsies and Over Serial Passages

We conducted comparative genomic analyses on patient-
derived biopsies versus PDX models to address three impor-
tant topics: (i) the genomic fidelity of the PDX models 
compared with patient tumor specimens collected at the 
same time point, (ii) the question of whether CTC-derived 
models are more divergent from the primary tumor than 
biopsy-derived models, and (iii) the question of whether 
genetic drift occurs during serial passaging of SCLC tumors 
in NSG mice.

To address the fidelity with which the xenograft models 
reflect primary tumors, we compared the exomes of CTC- or 
biopsy-derived PDX models with patient tumor biopsies col-
lected from the patients at the same time point (Fig. 3A). WES 
was performed on patient tumor biopsy tissue, xenograft 
tumors at passage 0 (P0), xenograft tumors at P1 or P2, and 
patient-matched germline DNA. Among the selected series, 
there were four sets of PDX tumors derived from CTCs and 
two sets derived from biopsies. For one of our sequenced 
PDX models, MGH1528-1, no corresponding patient tumor 
biopsy material was available (Table 1).

Comparison of copy-number alterations between patient 
biopsy and PDX samples demonstrated a high degree of simi-
larity, and comparison of successive PDX passages showed 
few changes in copy number (Fig. 3B). Consistent with pre-
vious observations (24), the copy-number profile of most 
SCLC tumor models pointed to LOH or copy-neutral LOH 
affecting 3p, 13q (harboring RB1), and 17p (harboring TP53) 
as well as frequent broader chromosomal gains on 3q and 5p 
(Fig. 3B). Notably, MGH1514-1 did not share these canonical 
genomic characteristics of SCLC tumors, despite confirmed 
inactivation alterations of TP53 and RB1 (Fig. 2).

There was an approximate 10-fold range in mutational 
burdens across the subset of sequenced PDX models, from 
27 mutations in MGH1514-1 (<1 mut/Mb) to over 500 
mutations in MGH1528-1 (>10 mut/Mb; Fig. 3C). Despite 
this wide range, we found minimal variation in mutational 
burden or the distribution of mutation types between patient 
biopsy and PDX. There was also no significant accumulation 
of mutations across two PDX passages (<1%). We further ana-
lyzed the retention of individual mutations between patient 
biopsy and PDX models at separate passages. In 5 of the 6 
cases (with the exception of MGH1514), at least 95% of all 
somatic alterations were shared between the tissue biopsy 
and PDX models (Fig. 3D; Supplementary Fig. S4). The rare 
differences between tissue biopsy and PDX samples included 
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Figure 3.  High genomic fidelity of SCLC PDX models derived from both CTCs and biopsies. A, Comparative genomic analysis on patient biopsy vs. PDX 
P0 and subsequently passaged PDX tumors (P1 for MGH1514-1 or P2 for all other models). B and C, Analysis of the copy-number alteration status (B) 
and of the number and type of somatic mutations (C) is displayed for six models. Initial tumor biopsy and derivative PDX models are described accord-
ing to the color panel provided in A. D, Venn diagrams show overlap of mutations between patient biopsy, PDX P0 and PDX P1/2 exomes. Diagrams are 
colored according to the annotation in A and are scaled to total number of mutations. Number of private mutations not shared by all three samples is 
shown in side of the diagrams, with color bar below indicating the sample(s). Source of each PDX model (C, CTC; B , biopsy) is indicated in parentheses 
next to the model number.
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an in-frame deletion in MTOR, present in the MGH1504 
patient tumor biopsy but not in the CTC-derived PDX; a 
heterozygous PIK3CA splice-site mutation acquired in the 
MGH1514-1 PDX model; and single-copy gain of the MYCL1 
locus in the MGH1515-1 PDX that may be reflected in the 
increased transcript levels (Fig. 2D; Supplementary Table S5). 
The fraction of shared mutations between PDX P0 and the 

patient biopsy was not significantly different from the frac-
tion shared between P0 and subsequent passages. This held 
true for both biopsy- and CTC-derived models, indicating that 
the CTCs collected at the time of the biopsy share the same 
genomic features as the sampled solid tumor. This result is 
consistent with the low degree of clonal heterogeneity in SCLC 
that has been previously reported (22). In summary, SCLC PDX 
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models retain a stable genome and maintain their somatic 
alterations between initial model generation (P0) and serial 
passages (P1/P2; >95%), thus faithfully recapitulating SCLC 
patient tumors at the time of model generation.

Functional Fidelity of PDX Models to Patient 
Response to Chemotherapy

To further assess the capacity of the PDXs to accurately 
model characteristics of the patient tumor, we sought to 
quantify their responses to EP. Acquired resistance to EP is 
commonly observed in the clinic. However, there was no cor-
relation between patient treatment histories and sensitivity 
to chemotherapeutics in vitro across a panel of 63 human 
SCLC cell lines (42), suggesting inadequacy of the cell lines 
for modeling clinical behavior. PDXs may better recapitulate 
patient treatment histories.

To assess EP response in our models, we first optimized an 
EP regimen to distinguish between serial PDX models derived 
from the same patient (MGH1518) prior to first-line chemo-
therapy and after subsequent lines of therapy (Fig. 4A and B). 
This regimen consists of cisplatin 7 mg/kg intraperitoneal 
(i.p.) day (d)1 and d8 plus etoposide 10 mg/kg i.p. d1, d2, d3, 
and d8, d9, d10. Significant tumor shrinkage was induced 
in the EP-naïve model, but not the model derived after the 
patient had received prior EP, recapitulating the evolving 
resistance of the patient’s tumor (Fig. 4B).

We then applied this EP dosing strategy to 30 PDX models, 
including 12 treatment-naïve models and 18 post-relapse 
models (Fig. 4C; Supplementary Fig. S5). Using large num-
bers of mice for each model would limit the feasibility of a 
population-based approach, and recent studies of hematopoi-
etic and solid-tumor PDX model populations have shown 
that small numbers of animals are sufficient to accurately 
compare tumor responses (43, 44). Models were therefore 
treated in biological duplicate or triplicate, and consistent 
with these studies, our results show highly concordant tumor 
volume curves between different mice carrying the same PDX 
(Fig. 4B; Supplementary Fig. S5). Responses were quanti-
fied by measuring the maximum depth of tumor response 
[minimum percent initial tumor volume (ITV) in the days 
14–28 window of the treatment], as well as the time to pro-
gression (TTP; days to 2x ITV; Fig. 4A). Response and TTP 
were strongly correlated across the model panel (Fig. 4D), and 
these metrics were applied to assess the fidelity of the models 
to patient responses.

To determine whether prior patient exposure to chemo-
therapy correlated with EP sensitivity in the models, the 
metrics of PDX response were compared between models 
derived from EP-naïve versus EP-treated patients (Fig. 4E). 
Maximum tumor response was significantly different, with 
nearly uniform sensitivity of models from EP-naïve patients 
and a range of responses in the models from previously 
treated patients (Fig. 4F). Clinically, first-line chemotherapy 
is administered for a finite number of cycles, as opposed to 
ongoing administration until resistance emerges. Therefore, 
this range of responses in post-relapse models is expected. 
When we examined TTP as a metric of model sensitivity to 
EP, we observed a trend toward prolonged TTP in the models 
from treatment-naïve patients compared with models from 
previously treated patients (Supplementary Fig. S6). Notably, 

assessment of xenograft TTP can be complicated by differ-
ences in intrinsic xenograft doubling times (Supplementary 
Fig. S7). To correct for this, the doubling times of each model 
(Tdbl) were calculated for each model in untreated xenografts. 
Doubling times were uncorrelated with patient treatment 
history (Fig. 4G; Supplementary Fig. S8). The corrected TTP 
[calculated as the ratio of TTP (doubling time in the presence 
of EP) to intrinsic doubling time; TTP/Tdbl ratio] was signifi-
cantly different between models derived from EP-naïve versus 
EP-treated patients (Fig. 4H; Supplementary Fig. S8).

We next sought to assess whether the relative TTP of each 
PDX model was consistent with the TTP of its donor patient. 
Patient TTP was measured as the number of days from the 
last dose of EP to the date of first radiographic progression of 
disease. Although many variables can affect TTP in the clinic, 
we found that the model EP response was moderately corre-
lated with patient TTP among PDXs derived from previously 
treated patients (Fig. 4I). This is consistent with the clinical 
observation that TTP following EP correlates with likelihood 
of response to next-line DNA-damaging therapy (45). Clinical 
TTP data for models from EP-naïve patients were limited to a 
smaller number of cases, and as a result, a thorough compari-
son to model TTP could not be performed.

Collectively, these results show that PDX responses and 
TTPs correlate with the patient treatment histories. These 
results stand in contrast to results from established cell lines, 
where chemotherapy sensitivity is uncorrelated with patient 
treatment history (42), and suggest that PDXs more accu-
rately model the clinical behavior of these cancers. Impor-
tantly, they also support the application of PDXs for studying 
clinically relevant EP resistance, acquired in patients rather 
than in an experimental laboratory system.

We therefore next sought to identify potential molecular 
features that correlate with chemoresistance. Transcriptome 
sequencing was performed on a subset of 19 models treated 
with EP and analyzed for signatures that correlated with treat-
ment sensitivity versus resistance (Supplementary Table S7). 
In parallel, quantitative Western blots for selected proteins 
with potential impact on chemoresistance were performed 
across the 30-model EP cohort. Transcript and protein levels 
were closely matched for most models in which both could be 
compared (Fig. 4J; Supplementary Fig. S9).

Recently, the putative RNA–DNA helicase SLFN11 has been 
associated with sensitivity to a number of DNA-damaging 
therapies, including EP (42, 46). In our PDX cohort, nei-
ther SLFN11 transcript levels (19 models) nor protein levels 
(30 models) correlated with EP response or TTP (Fig. 4K; 
Supplementary Fig. S9). Furthermore, SLFN11 levels were 
approximately equivalent in models derived from treatment-
naïve and previously treated patients (Fig. 4L; Supplementary 
Fig. S9). A similar lack of correlation with EP response was 
observed for ASCL1 and NEUROD1 (Supplementary Fig. S9).

A systematic analysis of the transcriptome sequencing 
dataset was performed to identify features and pathways that 
best correlated with EP response (Supplementary Fig. S10). 
The best-correlated transcripts (absolute Spearman coeffi-
cient >0.6, 359 genes) were analyzed by gene set enrichment 
analysis (GSEA; MSigDB v6.0) using only the Hallmark gene 
sets, a curated collection with small numbers of elements in 
each set, compiled from multiple independent databases (47, 
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Figure 4.  SCLC PDX model responses to first-line chemotherapy reflect patient treatment histories. A, % ITV vs. days after EP start for a single  
xenograft treated with two 1-week cycles of cisplatin 7 mpk i.p. d1 + etoposide 10 mpk i.p. d1–3 (tan bars). Response = minimum %ITV between d14 and 
d28. TTP = time to 2x ITV. B, Differential EP response of serial models from patient MGH1518 derived before first-line chemotherapy and after second-
line therapy. C, Trial of EP across a population of 30 PDX models: 12 from treatment-naïve patients (green) and 18 from previously treated patients (pur-
ple). Results presented in D–O, with same green/purple color code in E–I and L. D, Correlation of PDX EP response and TTP. E, Waterfall plot of PDX best 
response. F–H, Comparison of tumor metrics following EP treatment in PDX models from treatment-naïve vs. post-relapse patients, with unpaired t test 
P values: best response (F), doubling time (G), and ratio of TTP to doubling time (H). I, TTP in post-relapse PDX models vs. EP TTP in the donor patients. 
J, Correlation of SLFN transcript abundance in transcriptome sequencing (TPM), and protein levels measured by quantitative Western blot (arbitrary 
units) across 19 models, with logarithmic trend line. K, Lack of correlation between EP response (rank 1 = deepest response) and SLFN11 expression 
(rank 1 = highest level): protein on left (30 models), transcript on right (19 models). L, No difference in SLFN11 protein levels between PDX models from 
treatment-naïve vs. post-relapse patients. M, Gene set enrichment analysis (GSEA) of transcripts that correlate with PDX EP resistance (Spearman ρ 
> 0.6) using “Hallmark” gene sets (MSigDB v6.0). Gene sets with FDR of less than 1% are shown. N, 200 putative MYC targets that correlate with GSEA 
MYC signature were compared with inventory of chromatin immunoprecipitation sequencing (ChIP-seq) datasets. A total of 807 datasets from ENCODE, 
covering 181 transcription factors (TF), had >1 intersecting gene. Inset: top enriched TFs for these genes, with a Kolmogorov–Smirnov (KS) statistic P 
value < 0.01. O, MYC regulon correlates with EP resistance. MYC regulon = 155/200 putative MYC targets that were present in top 7 MYC/MAX ChIP-seq 
dataset. Regulon expression rank vs. EP response rank for 19 PDX models.
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48). No gene sets were positively correlated with sensitivity to 
EP (FDR q-value cutoff <0.01), reflecting the high stringency 
of the analysis. However, 10 gene sets scored for EP resistance, 
including genes upregulated in response to UV and reactive 
oxygen species exposure, and genes involved in drug detoxi-
fication (“xenobiotic metabolism”; Fig. 4M; Supplementary 
Table S8).

Also among these were two distinct MYC target lists con-
taining 14 genes in total, which we term the “small MYC” 
regulon. A MYC target signature was of particular interest 
given recent data that overexpression of Myc in an SCLC 
GEMM promotes tumor growth and may confer relative 
chemotherapy resistance (49). Given the number of potential 
MYC targets that contain a canonical E-box, we performed a 
secondary assessment of whether these 14 genes represented 
a MYC transcription signature. We identified the 200 tran-
scripts that most closely mirrored the expression pattern of 
the small MYC regulon. These transcripts were compared 
by enrichment analysis (Enrichr) with the ENCODE collec-
tion of transcription factor chromatin immunoprecipitation 
sequencing (ChIP-seq) datasets (50, 51). A total of 807 ChIP-
seq datasets from 181 transcription factors contained at least 
1 overlapping gene with the query set (Fig. 4N; Supplemen-
tary Table S8). MYC and MAX ChIP-seq datasets were among 
the most enriched for the 200-gene query set, as well as the 
MYC family transcription factor USF1, supporting the conclu-
sion that the 14-gene signal initially detected by GSEA does 
represent a MYC target signature (Fig. 4M). Indeed, 155 of 
200 genes in the large MYC set were contained within the top 
8 ChIP-seq datasets (Supplementary Table S8). This “large 
MYC” regulon, composed of E-box–containing genes that are 
directly bound by MYC, was strongly anticorrelated with EP 
sensitivity, measured by both response and TTP (Fig. 4P; Sup-
plementary Fig. S11). These results support the conclusion 
that upregulation of a MYC signature may be a biomarker of 
EP resistance. Furthermore, this analysis demonstrates that 
this large panel of PDX models and their quantified EP sen-
sitivities can be applied for novel discovery of transcriptional 
profiles correlated to chemotherapy sensitivity or resistance.

Correlation between Patient and Model 
Responses to an Experimental Therapy

To address the capacity of serial PDXs to model tumor 
evolution from a single patient over multiple time points, 
we focused on models derived from MGH1528. The patient 
was a 58-year-old male who had received several prior lines 
of therapy (MGH1528, Table 1). He was enrolled onto an 
ongoing phase I/II clinical trial of combination olaparib 
and temozolomide (OT) in patients with SCLC that has 
progressed following at least one prior line of chemotherapy 
(NCT02446704). At the time of enrollment on the clinical 
trial, the patient had widely metastatic disease including a 
large left axillary mass (Fig. 5A). He was treated with OT and 
had a partial response by RECIST 1.1 criteria, with a nadir 
at day 89. He remained on study 6.5 months, but ultimately 
developed progressive disease.

Serial PDX models were generated from CTCs immediately 
prior to enrollment onto the OT trial (MGH1528-1) and at 
the time of relapse (MGH1528-2), which allowed for phar-
macologic interrogation in vivo with the mouse model and  

in vitro with PDX-derived short-term cell cultures (STC; Fig. 
5B and C). We first assessed the in vivo response of the tumors 
to the combination treatment with OT. Mice bearing tumors 
from MGH1528-1 were treated with one cycle of OT, which 
resulted in dramatic tumor regressions, whereas tumors in 
vehicle-treated mice progressed rapidly (Fig. 5B). However, 
the PDX tumors derived after the patient’s progression on 
OT (MGH1528-2) did not respond to this treatment and 
in fact demonstrated similar growth kinetics to the vehicle-
treated animals (Fig. 5B). These serial CTC-derived PDX 
models therefore reflected the evolving treatment sensitivities 
of the patient tumor at the time of CTC collection.

Although PDX models permit functional analysis of 
patient drug responses, the requirement for in vivo experi-
ments may limit both throughput and assay variety. STCs 
could greatly expand the range of analyses of PDX models 
while generating fewer in vitro artifacts than long-term cell 
line establishment. STCs were initiated from the MGH1528 
serial models and treated with two-dimensional titrated com-
binations of olaparib and temozolomide (Fig. 5C). Cultures 
were initiated on the day of tumor resection and treated 
within 24 hours of cell seeding. The MGH1528-1 culture 
demonstrated high sensitivity to both olaparib and temozo-
lomide, as well as the combination. By contrast, MGH1528-2 
was significantly less sensitive to the OT combination (Fig. 
5C). Thus, OT responses in STCs derived from serial PDX 
models show concordance with both in vivo responses and 
the patient clinical course. We anticipate that these types of 
serial models will enable detailed mechanistic studies of how 
resistance to therapy evolves in patients.

DISCUSSION
Numerous model systems for studying SCLC exist, includ-

ing cell lines, GEMMs, and PDXs. Although each has its rela-
tive merits and limitations, the purpose of any model system 
is to enable clinically relevant and impactful discoveries. Here, 
we report the efficient production of a large panel of PDX 
models and demonstrate the high genomic and functional 
fidelity of these models when compared with the patient 
tumors from which they were derived. These findings support 
a prominent role for PDX models in SCLC translational sci-
ence. The high efficiency of our PDX development platform 
(38% for CTCs and 89% for biopsies) suggests that the genera-
tion of large model populations, as well as serial models from 
the same patient, may ultimately become routine, particularly 
in the context of clinical trials.

Importantly, our experience generating SCLC PDXs from 
biopsies and effusions demonstrates that model develop-
ment is highly efficient from a wide variety of metastatic sites 
(including lymph nodes, subcutaneous nodules, brain metas-
tases, adrenal metastases, and pleural fluid) and using a vari-
ety of modalities (including CT-guided biopsy, ultrasound 
guided biopsy, endobronchial ultrasound, surgical resection, 
thoracentesis, and pericardiocentesis; Supplementary Table 
S2). PDX development was more efficient from biopsies than 
from CTCs, likely due to larger numbers of starting tumor 
cells and preservation of tumor microenvironments. At Mas-
sachusetts General Hospital (MGH), core biopsies at the time 
of diagnosis are standard, even for suspected SCLC. This 
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Figure 5.  SCLC PDX models recapitulate patient responses to an experimental therapy. A, Axial CT scan images from patient MGH1528 at multiple 
time points: immediately before starting treatment on olaparib + temozolomide (OT; left), during treatment at nadir of response (middle), and at the time 
of progression (right). The schematic above indicates prior lines of therapy, with carboplatin + etoposide (EC) shown in black arrows, other therapies 
shown in gray arrows, and OT shown as an orange arrow. Arrows are not drawn to scale with respect to time on treatments. B, PDX models generated 
from patient MGH1528 prior to OT (MGH1528-1) and at the time of progression (MGH1528-2) were treated with OT (blue) or vehicle (gray) for one cycle 
(5 days, blue shading). Tumor dimensions were measured 3 times per week and plotted as percent ITV vs. time. C, STCs generated from untreated PDX 
tumors were treated with OT combinations in vitro. Cultures were seeded on the day of tumor extraction (day 0), treatment was initiated within 24 hours 
(day 1), and viability was assayed after 5 days of treatment (day 6). Olaparib doses (9) range from 10 nmol/L to 10 µmol/L and temozolomide doses (5) 
from 1 to 300 µmol/L, both on exponential scales.
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provides an opportunity to consent patients to a research 
protocol prior to their diagnostic biopsy and to collabo-
rate with interventional colleagues to collect tissue for PDX 
development. At the time of progression after a prior therapy, 
repeat biopsies are not the standard of care, and thus tissue 
collection is restricted to those patients undergoing a biopsy 

as a requirement for a clinical trial or for unusual clinical 
circumstances. We therefore encourage the incorporation of 
pretreatment and posttreatment biopsies into SCLC clinical 
trials, as these tissues can be used not only for direct assays, 
but also for efficient generation of PDX models representa-
tive of the disease at the matched time point.
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The CTC-iChip or similar automated technologies may fur-
ther help to standardize the generation of SCLC PDX models, 
particularly in situations when a biopsy is not otherwise clinically 
indicated. In addition to our own technology, there are multiple 
similar technologies currently available including Clearbridge, 
Apocell, and CytoScale (reviewed in ref. 21). The CTC-iChip 
technology is also currently being commercially developed. We 
anticipate that the high efficiency of PDX generation from CTCs 
will be reproducible with other microfluidic CTC isolation tech-
nologies, though this remains to be directly tested.

SCLC tumors have extremely complex genomes with exten-
sive copy-number alterations and a high mutational burden. 
Furthermore, these tumors harbor recurrent alterations that 
can promote genome instability, most notably inactivation 
of TP53 and RB1. Initial studies on PDX models of SCLC 
have confirmed that they share the genomic and molecular 
hallmarks of the human disease (5, 10, 15). However, the 
extent to which an individual model faithfully recapitulates 
the specific molecular and functional characteristics of the 
donor patient tumor has been uncertain.

Here, we performed a comprehensive genomic study of SCLC 
PDX models, which for the first time demonstrates that the 
somatic mutational landscapes of the models closely match syn-
chronous tumor biopsies and remain stable over early passages 
in mice. These features are true of both biopsy- and CTC-derived 
PDX models and stand in contrast to other solid tumor types. 
For malignancies such as lung adenocarcinoma (52), colorectal 
cancer, and melanoma (53, 54), marked genomic heterogeneity 
has been observed between anatomically distinct metastases, 
especially following the emergence of resistance to therapy. For 
PDX models of breast cancer, retention of intratumor hetero-
geneity has been demonstrated, as well as the evolution of new 
subclones over serial passages (55). Furthermore, a recent com-
prehensive study of PDX models derived from diverse tumor 
types, but excluding SCLC, demonstrated marked genomic evo-
lution over early passages (25). Therefore, the fidelity of the 
CTC-derived SCLC models was particularly surprising: A small 
number of tumor cells with high mutational burdens, shed into 
circulation, collected, grown into xenografts, and repeatedly pas-
saged, were found to have nearly superimposable genomes with 
patient tumor biopsies taken from anatomically distinct loca-
tions (Fig. 3D). This supports the idea that despite a high muta-
tional burden (>8 mutations per Mb), clonal homogeneity is a 
distinguishing feature of SCLC (22) and, in addition, suggests 
relative genomic stability. The genomic fidelity of CTC-derived 
models has important implications for the utility of SCLC 
CTCs in translational research, and for the validity of molecular 
diagnostics that use live cells and cell-free DNA. We do note that 
there are handful of somatic alterations that differ between the 
PDX models and the biopsies (<5%). It remains to be understood 
how these subtle differences affect the functional fidelity of the 
PDX to the patient’s tumor, and further assessments of SCLC 
PDX models are undoubtedly warranted.

A large panel of PDX models, derived from both treatment-
naïve and previously treated patients, enables well-powered 
functional in vivo studies. Here, among 30 PDX models, we 
observe a range of sensitivities to standard-of-care chemo-
therapy, EP. Unlike in SCLC cell lines (42), EP sensitivity in 
our PDX models correlates with patient treatment history, 
supporting the conclusion that these models more accurately 

recapitulate the behavior of patients’ tumors. The breadth 
of this collection of PDXs also enables analysis of correlative 
transcription signatures. Across 19 models, we identify several 
expression signatures that correlated with relative EP resist-
ance, many of which warrant further study. Notably among 
this list, we observe that expression of a subset of MYC targets 
emerges as a marker of EP resistance. This observation is con-
sistent with recent work in GEMMs, where overexpression of 
Myc promotes growth of tumors that rapidly relapse after EP 
treatment in vivo (49). In GEMMs, Myc overexpression drives a 
Neurod1-high, Ascl1-low (so-called “neuroendocrine-low”) pro-
file, though this dichotomy is less prominent across a panel 
of human cell lines and tumors. Similarly, we find that some 
tumors exhibit distinct expression of these two transcription 
factors (Supplementary Fig. S9A), though others do not fit 
this pattern of mutually exclusive expression. Thus, although 
the interplay between expression of MYC, NEUROD1, and 
ASCL1 may be more complex in human tumors than in 
GEMMs, our findings support the conclusion that a MYC 
expression signature is a marker of greater chemotherapy 
resistance in SCLC, and we provide a demonstration of this 
observation in unperturbed samples from patients.

SLFN11 has also been described as a potential biomarker of 
sensitivity to DNA-damaging agents (5, 10, 46, 56). In a study 
by Gardner and colleagues, acquired EP resistance in PDX 
models derived from chemotherapy-naïve patients led to down-
regulation of SLFN11. By contrast, we found SLFN11 expression 
levels (mRNA or protein) did not correlate with either PDX 
EP response or history of prior chemotherapy exposure for 
the donor patients. These differences likely arise from the fact 
that these are orthogonal experiments: one testing the effect of 
induced high-level EP resistance within the same model and 
the other comparing expression with intrinsic chemotherapy 
response and clinical history. Additional work is warranted to 
elucidate the role of SLFN11 and its potential applications, but 
in our dataset, it was not a biomarker of EP sensitivity.

In summary, we introduce here a new strategy for efficient 
development of a panel of SCLC PDX models, validate the 
genomic and functional fidelity of these models, and use the 
panel to assess markers of chemotherapy response. We believe 
that these advances lay the foundation for further functional 
analyses across large panels of SCLC PDX models in which 
experimental results can be directly compared with patient 
clinical outcomes. In addition, reliably efficient generation 
of PDX models enables generation of isogenic models from 
patients with SCLC at multiple times in their treatment 
course. We anticipate that these types of models will be a 
powerful resource in the context of SCLC drug development, 
facilitating the identification of biomarkers and mediators of 
sensitivity and acquired resistance to therapy.

METHODS
Extended methods are available in Supplementary Materials.

PDX Model Generation
All tissue and blood samples from patients were collected per IRB-

approved protocols with written informed consent from the patients 
and in accordance with the Declaration of Helsinki. All mouse stud-
ies were conducted through Institutional Animal Care and Use 
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Committee–approved animal protocols in accordance with MGH insti-
tutional guidelines. To initiate a PDX model (P0), SCLC tumor material 
(CTCs, leukocyte/RBC-depleted effusion, or tumor core needle biopsy 
or surgical sample) was resuspended in 1:1 ice-cold HITES media and 
Matrigel (Corning), and injected subcutaneously via large bore (18G) 
needle into the right flank of an NSG mouse (NOD.Cg-Prkdcscid 
Il2rgtm1Wjl/SzJ; Jackson Laboratories). Whole blood and pleural or peri-
cardial effusions were collected and transported at room temperature, 
and core biopsy samples on ice. Biopsy samples were diced by scal-
pel prior to resuspension and injection. Effusion samples were red 
blood cell (RBC)–depleted (BioLegend RBC lysis buffer) and leukocyte 
depleted (Miltenyi Biotec anti-CD45 IgG microbeads) per standard pro-
tocols. SCLC CTCs were enriched from fresh peripheral blood samples 
using either the CTC-iChip microfluidic device, as described previously 
for negative depletion of leukocytes and enrichment of untagged CTCs 
(27, 28), or the manual Ficoll gradient method previously described 
(20). After tumor emergence, palpable tumors were measured with elec-
tronic calipers weekly until tumors exceeded 1,500 mm3, at which point 
animals were euthanized and tumors were resected. Scalpel-dissected 
xenograft fragments were either immediately implanted into NSG mice 
for passaging, cryopreserved for later passaging, fixed in 10% neutral 
buffered formalin (Sigma) for pathologic analysis, or fresh-frozen in 
liquid nitrogen for molecular analysis. For pathologic review, 5 µm sec-
tions of formalin-fixed, paraffin-embedded (FFPE) tissue were stained 
with hematoxylin and eosin as well as antibodies against chromogranin, 
synaptophysin, CD56, CD45, and RB (antibody details in Supplemen-
tary Methods). The histologic diagnosis of small cell carcinoma was 
rendered in accordance with World Health Organization Classification 
of the Lung, Pleura, Thymus and Heart, 4th edition (57).

WES and Transcriptome Sequencing
Total DNA and RNA were isolated from fresh-frozen or FFPE tumor 

tissue, and germline DNA was obtained from matched normal donor 
blood or FFPE tissue histologically confirmed to be free of tumor cells. 
DNA from FFPE tissue was extracted with the Maxwell FFPE DNA 
Purification Kit on a Maxwell 16 MDx instrument (Promega). Nucleic 
acids were extracted from fresh-frozen tissue and patient-derived blood 
by standard protocols (Supplementary Methods). For WES, DNA was 
fragmented by sonication, end-repaired, and adaptor ligated with incor-
poration of index barcodes, size-selected and enriched with Sure select 
XT (Agilent), and sequenced with a paired-end 2 × 75 bp protocol for 
an average coverage of 100–120× (Supplementary Table S3). For paired-
end RNA sequencing (RNA-seq), cDNA libraries were prepared with the 
Illumina TruSeq kit and sequenced with a paired-end 2 × 75 bp proto-
col on an Illumina HiSeq instrument. For single-end RNA-seq, cDNA 
libraries were prepared with the Kapa Stranded RNA-seq Kit with Ribo-
Erase HMR method and sequenced with a single-end 75 bp protocol 
on a NextSeq 500 instrument. Sequence alignments were performed 
against both human and mouse reference genomes to filter mouse-
specific reads. Somatic mutations and copy-number alterations were 
determined as previously described (22, 24). Transcript expression levels 
were determined using Cufflinks and expressed as reads per kilobase 
million (RPKM; paired-end RNA-seq) or using Kallisto and expressed 
as transcripts per million (TPM; single-end RNA-seq). Downstream 
bioinformatic analyses are described in the Supplementary Informa-
tion. Paired-end whole-exome and transcriptome sequencing data are 
deposited at the European Genome-phenome Archive, which is hosted 
by the EBI (EGA; http://www.ebi.ac.uk/ega/), under accession num-
ber EGAS00001002853. Single-end transcriptome sequencing data are 
deposited in the NCBI’s Gene Expression Omnibus (GEO; https://
www.ncbi.nlm.nih.gov/geo/), under accession number GSE110853.

Immunoblotting
Fresh-frozen xenograft samples were lysed in RIPA buffer using a 

TissueLyzer II (Qiagen) homogenizer. SDS-PAGE was performed by 

standard methods, and PVDF membranes were probed with the fol-
lowing antibodies: from Cell Signaling Technology: alpha-tubulin, 
beta-actin, NeuroD1, total EGFR, pAKT (S473), pERK1/2 (T202/
Y204); from Abcam: Ascl1 (MASH1); from Santa Cruz Biotechnol-
ogy: Slfn11. Membranes were imaged with a Syngene G:BOX, and 
band densitometry was performed using Syngene GeneSys software. 
Ratio to loading control (alpha-tubulin) was calculated, and lysates 
from established SCLC cell lines (CORL88, CORL279, NCIH82, 
NCIH1048, and DMS273) were used as interblot standards. Cell lines 
were obtained between 2015 and 2017 from the MGH Center for 
Molecular Therapeutics, which performs routine authentication by 
single-nucleotide polymorphism and short tandem repeat analyses, 
and were passaged in HITES media + 2% FBS for less than 3 months 
prior to lysate preparation.

Mouse Treatment Studies
Trials were initiated at xenograft volumes of 400 to 600 mm3 for 3 

to 5 mice per model per treatment arm, and tumors were measured 
2 to 3x weekly. EP: cisplatin 7 mg/kg i.p. d1,8 + etoposide 10 mg/kg i.p. 
d1-3,8-10. OT: olaparib 50 mg/kg oral gavage (OG) d1-5 + temozo-
lomide 25 mg/kg OG d1-5. EP trial tumor metrics: TTP = days from 
start of treatment to 2x ITV, response = change in tumor volume 
between ITV and d14–28 minimum, TTP/Tdbl = ratio of TTP to 
tumor doubling time in untreated mice. Endpoints: tumor volume > 
2x ITV or 80 days after start of treatment.

PDX Short-Term Cultures
Xenografts were resected, fragmented, and rapidly dissociated 

with a gentleMACS Octo Dissociator (Miltenyi Biotec). Live cells 
were enriched by Ficoll gradient and depleted of murine cells with 
anti-mouse IgG microbeads (Miltenyi Biotec). PDX culture suspen-
sion was seeded in 96-well format in HITES media + 2% FBS +  
10 µmol/L ROC kinase inhibitor (Y-27632; Selleckchem). Titration 
of olaparib and temozolomide was performed with a D300e digital 
drug dispenser (Tecan Life Sciences). Viability was assessed after  
5 days using CellTiter-Glo (Promega).
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